feat: add support for Matrixone database (#20714)

This commit is contained in:
LiuBo 2025-06-19 10:20:12 +08:00 committed by GitHub
parent e99861d4fe
commit 17fe62cf91
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
17 changed files with 2504 additions and 2248 deletions

1
.gitignore vendored
View File

@ -179,6 +179,7 @@ docker/volumes/pgvecto_rs/data/*
docker/volumes/couchbase/*
docker/volumes/oceanbase/*
docker/volumes/plugin_daemon/*
docker/volumes/matrixone/*
!docker/volumes/oceanbase/init.d
docker/nginx/conf.d/default.conf

View File

@ -137,7 +137,7 @@ WEB_API_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
CONSOLE_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
# Vector database configuration
# support: weaviate, qdrant, milvus, myscale, relyt, pgvecto_rs, pgvector, pgvector, chroma, opensearch, tidb_vector, couchbase, vikingdb, upstash, lindorm, oceanbase, opengauss, tablestore
# support: weaviate, qdrant, milvus, myscale, relyt, pgvecto_rs, pgvector, pgvector, chroma, opensearch, tidb_vector, couchbase, vikingdb, upstash, lindorm, oceanbase, opengauss, tablestore, matrixone
VECTOR_STORE=weaviate
# Weaviate configuration
@ -294,6 +294,13 @@ VIKINGDB_SCHEMA=http
VIKINGDB_CONNECTION_TIMEOUT=30
VIKINGDB_SOCKET_TIMEOUT=30
# Matrixone configration
MATRIXONE_HOST=127.0.0.1
MATRIXONE_PORT=6001
MATRIXONE_USER=dump
MATRIXONE_PASSWORD=111
MATRIXONE_DATABASE=dify
# Lindorm configuration
LINDORM_URL=http://ld-*******************-proxy-search-pub.lindorm.aliyuncs.com:30070
LINDORM_USERNAME=admin

View File

@ -281,6 +281,7 @@ def migrate_knowledge_vector_database():
VectorType.ELASTICSEARCH,
VectorType.OPENGAUSS,
VectorType.TABLESTORE,
VectorType.MATRIXONE,
}
lower_collection_vector_types = {
VectorType.ANALYTICDB,

View File

@ -24,6 +24,7 @@ from .vdb.couchbase_config import CouchbaseConfig
from .vdb.elasticsearch_config import ElasticsearchConfig
from .vdb.huawei_cloud_config import HuaweiCloudConfig
from .vdb.lindorm_config import LindormConfig
from .vdb.matrixone_config import MatrixoneConfig
from .vdb.milvus_config import MilvusConfig
from .vdb.myscale_config import MyScaleConfig
from .vdb.oceanbase_config import OceanBaseVectorConfig
@ -323,5 +324,6 @@ class MiddlewareConfig(
OpenGaussConfig,
TableStoreConfig,
DatasetQueueMonitorConfig,
MatrixoneConfig,
):
pass

View File

@ -0,0 +1,14 @@
from pydantic import BaseModel, Field
class MatrixoneConfig(BaseModel):
"""Matrixone vector database configuration."""
MATRIXONE_HOST: str = Field(default="localhost", description="Host address of the Matrixone server")
MATRIXONE_PORT: int = Field(default=6001, description="Port number of the Matrixone server")
MATRIXONE_USER: str = Field(default="dump", description="Username for authenticating with Matrixone")
MATRIXONE_PASSWORD: str = Field(default="111", description="Password for authenticating with Matrixone")
MATRIXONE_DATABASE: str = Field(default="dify", description="Name of the Matrixone database to connect to")
MATRIXONE_METRIC: str = Field(
default="l2", description="Distance metric type for vector similarity search (cosine or l2)"
)

View File

@ -686,6 +686,7 @@ class DatasetRetrievalSettingApi(Resource):
| VectorType.TABLESTORE
| VectorType.HUAWEI_CLOUD
| VectorType.TENCENT
| VectorType.MATRIXONE
):
return {
"retrieval_method": [
@ -733,6 +734,7 @@ class DatasetRetrievalSettingMockApi(Resource):
| VectorType.TABLESTORE
| VectorType.TENCENT
| VectorType.HUAWEI_CLOUD
| VectorType.MATRIXONE
):
return {
"retrieval_method": [

View File

@ -0,0 +1,233 @@
import json
import logging
import uuid
from functools import wraps
from typing import Any, Optional
from mo_vector.client import MoVectorClient # type: ignore
from pydantic import BaseModel, model_validator
from configs import dify_config
from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.embedding.embedding_base import Embeddings
from core.rag.models.document import Document
from extensions.ext_redis import redis_client
from models.dataset import Dataset
logger = logging.getLogger(__name__)
class MatrixoneConfig(BaseModel):
host: str = "localhost"
port: int = 6001
user: str = "dump"
password: str = "111"
database: str = "dify"
metric: str = "l2"
@model_validator(mode="before")
@classmethod
def validate_config(cls, values: dict) -> dict:
if not values["host"]:
raise ValueError("config host is required")
if not values["port"]:
raise ValueError("config port is required")
if not values["user"]:
raise ValueError("config user is required")
if not values["password"]:
raise ValueError("config password is required")
if not values["database"]:
raise ValueError("config database is required")
return values
def ensure_client(func):
@wraps(func)
def wrapper(self, *args, **kwargs):
if self.client is None:
self.client = self._get_client(None, False)
return func(self, *args, **kwargs)
return wrapper
class MatrixoneVector(BaseVector):
"""
Matrixone vector storage implementation.
"""
def __init__(self, collection_name: str, config: MatrixoneConfig):
super().__init__(collection_name)
self.config = config
self.collection_name = collection_name.lower()
self.client = None
@property
def collection_name(self):
return self._collection_name
@collection_name.setter
def collection_name(self, value):
self._collection_name = value
def get_type(self) -> str:
return VectorType.MATRIXONE
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
if self.client is None:
self.client = self._get_client(len(embeddings[0]), True)
return self.add_texts(texts, embeddings)
def _get_client(self, dimension: Optional[int] = None, create_table: bool = False) -> MoVectorClient:
"""
Create a new client for the collection.
The collection will be created if it doesn't exist.
"""
lock_name = f"vector_indexing_lock_{self._collection_name}"
with redis_client.lock(lock_name, timeout=20):
client = MoVectorClient(
connection_string=f"mysql+pymysql://{self.config.user}:{self.config.password}@{self.config.host}:{self.config.port}/{self.config.database}",
table_name=self.collection_name,
vector_dimension=dimension,
create_table=create_table,
)
collection_exist_cache_key = f"vector_indexing_{self._collection_name}"
if redis_client.get(collection_exist_cache_key):
return client
try:
client.create_full_text_index()
except Exception as e:
logger.exception("Failed to create full text index")
redis_client.set(collection_exist_cache_key, 1, ex=3600)
return client
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
if self.client is None:
self.client = self._get_client(len(embeddings[0]), True)
assert self.client is not None
ids = []
for _, doc in enumerate(documents):
if doc.metadata is not None:
doc_id = doc.metadata.get("doc_id", str(uuid.uuid4()))
ids.append(doc_id)
self.client.insert(
texts=[doc.page_content for doc in documents],
embeddings=embeddings,
metadatas=[doc.metadata for doc in documents],
ids=ids,
)
return ids
@ensure_client
def text_exists(self, id: str) -> bool:
assert self.client is not None
result = self.client.get(ids=[id])
return len(result) > 0
@ensure_client
def delete_by_ids(self, ids: list[str]) -> None:
assert self.client is not None
if not ids:
return
self.client.delete(ids=ids)
@ensure_client
def get_ids_by_metadata_field(self, key: str, value: str):
assert self.client is not None
results = self.client.query_by_metadata(filter={key: value})
return [result.id for result in results]
@ensure_client
def delete_by_metadata_field(self, key: str, value: str) -> None:
assert self.client is not None
self.client.delete(filter={key: value})
@ensure_client
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
assert self.client is not None
top_k = kwargs.get("top_k", 5)
document_ids_filter = kwargs.get("document_ids_filter")
filter = None
if document_ids_filter:
filter = {"document_id": {"$in": document_ids_filter}}
results = self.client.query(
query_vector=query_vector,
k=top_k,
filter=filter,
)
docs = []
# TODO: add the score threshold to the query
for result in results:
metadata = result.metadata
docs.append(
Document(
page_content=result.document,
metadata=metadata,
)
)
return docs
@ensure_client
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
assert self.client is not None
top_k = kwargs.get("top_k", 5)
document_ids_filter = kwargs.get("document_ids_filter")
filter = None
if document_ids_filter:
filter = {"document_id": {"$in": document_ids_filter}}
score_threshold = float(kwargs.get("score_threshold", 0.0))
results = self.client.full_text_query(
keywords=[query],
k=top_k,
filter=filter,
)
docs = []
for result in results:
metadata = result.metadata
if isinstance(metadata, str):
import json
metadata = json.loads(metadata)
score = 1 - result.distance
if score >= score_threshold:
metadata["score"] = score
docs.append(
Document(
page_content=result.document,
metadata=metadata,
)
)
return docs
@ensure_client
def delete(self) -> None:
assert self.client is not None
self.client.delete()
class MatrixoneVectorFactory(AbstractVectorFactory):
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> MatrixoneVector:
if dataset.index_struct_dict:
class_prefix: str = dataset.index_struct_dict["vector_store"]["class_prefix"]
collection_name = class_prefix
else:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
dataset.index_struct = json.dumps(self.gen_index_struct_dict(VectorType.MATRIXONE, collection_name))
config = MatrixoneConfig(
host=dify_config.MATRIXONE_HOST or "localhost",
port=dify_config.MATRIXONE_PORT or 6001,
user=dify_config.MATRIXONE_USER or "dump",
password=dify_config.MATRIXONE_PASSWORD or "111",
database=dify_config.MATRIXONE_DATABASE or "dify",
metric=dify_config.MATRIXONE_METRIC or "l2",
)
return MatrixoneVector(collection_name=collection_name, config=config)

View File

@ -164,6 +164,10 @@ class Vector:
from core.rag.datasource.vdb.huawei.huawei_cloud_vector import HuaweiCloudVectorFactory
return HuaweiCloudVectorFactory
case VectorType.MATRIXONE:
from core.rag.datasource.vdb.matrixone.matrixone_vector import MatrixoneVectorFactory
return MatrixoneVectorFactory
case _:
raise ValueError(f"Vector store {vector_type} is not supported.")

View File

@ -29,3 +29,4 @@ class VectorType(StrEnum):
OPENGAUSS = "opengauss"
TABLESTORE = "tablestore"
HUAWEI_CLOUD = "huawei_cloud"
MATRIXONE = "matrixone"

View File

@ -202,4 +202,5 @@ vdb = [
"volcengine-compat~=1.0.0",
"weaviate-client~=3.24.0",
"xinference-client~=1.2.2",
"mo-vector~=0.1.13",
]

View File

@ -0,0 +1,25 @@
from core.rag.datasource.vdb.matrixone.matrixone_vector import MatrixoneConfig, MatrixoneVector
from tests.integration_tests.vdb.test_vector_store import (
AbstractVectorTest,
get_example_text,
setup_mock_redis,
)
class MatrixoneVectorTest(AbstractVectorTest):
def __init__(self):
super().__init__()
self.vector = MatrixoneVector(
collection_name=self.collection_name,
config=MatrixoneConfig(
host="localhost", port=6001, user="dump", password="111", database="dify", metric="l2"
),
)
def get_ids_by_metadata_field(self):
ids = self.vector.get_ids_by_metadata_field(key="document_id", value=self.example_doc_id)
assert len(ids) == 1
def test_matrixone_vector(setup_mock_redis):
MatrixoneVectorTest().run_all_tests()

4421
api/uv.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -399,7 +399,7 @@ SUPABASE_URL=your-server-url
# ------------------------------
# The type of vector store to use.
# Supported values are `weaviate`, `qdrant`, `milvus`, `myscale`, `relyt`, `pgvector`, `pgvecto-rs`, `chroma`, `opensearch`, `oracle`, `tencent`, `elasticsearch`, `elasticsearch-ja`, `analyticdb`, `couchbase`, `vikingdb`, `oceanbase`, `opengauss`, `tablestore`,`vastbase`,`tidb`,`tidb_on_qdrant`,`baidu`,`lindorm`,`huawei_cloud`,`upstash`.
# Supported values are `weaviate`, `qdrant`, `milvus`, `myscale`, `relyt`, `pgvector`, `pgvecto-rs`, `chroma`, `opensearch`, `oracle`, `tencent`, `elasticsearch`, `elasticsearch-ja`, `analyticdb`, `couchbase`, `vikingdb`, `oceanbase`, `opengauss`, `tablestore`,`vastbase`,`tidb`,`tidb_on_qdrant`,`baidu`,`lindorm`,`huawei_cloud`,`upstash`, `matrixone`.
VECTOR_STORE=weaviate
# The Weaviate endpoint URL. Only available when VECTOR_STORE is `weaviate`.
@ -490,6 +490,13 @@ TIDB_VECTOR_USER=
TIDB_VECTOR_PASSWORD=
TIDB_VECTOR_DATABASE=dify
# Matrixone vector configurations.
MATRIXONE_HOST=matrixone
MATRIXONE_PORT=6001
MATRIXONE_USER=dump
MATRIXONE_PASSWORD=111
MATRIXONE_DATABASE=dify
# Tidb on qdrant configuration, only available when VECTOR_STORE is `tidb_on_qdrant`
TIDB_ON_QDRANT_URL=http://127.0.0.1
TIDB_ON_QDRANT_API_KEY=dify

View File

@ -617,6 +617,18 @@ services:
ports:
- ${MYSCALE_PORT:-8123}:${MYSCALE_PORT:-8123}
# Matrixone vector store.
matrixone:
hostname: matrixone
image: matrixorigin/matrixone:2.1.1
profiles:
- matrixone
restart: always
volumes:
- ./volumes/matrixone/data:/mo-data
ports:
- ${MATRIXONE_PORT:-6001}:${MATRIXONE_PORT:-6001}
# https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
# https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html#docker-prod-prerequisites
elasticsearch:

View File

@ -195,6 +195,11 @@ x-shared-env: &shared-api-worker-env
TIDB_VECTOR_USER: ${TIDB_VECTOR_USER:-}
TIDB_VECTOR_PASSWORD: ${TIDB_VECTOR_PASSWORD:-}
TIDB_VECTOR_DATABASE: ${TIDB_VECTOR_DATABASE:-dify}
MATRIXONE_HOST: ${MATRIXONE_HOST:-matrixone}
MATRIXONE_PORT: ${MATRIXONE_PORT:-6001}
MATRIXONE_USER: ${MATRIXONE_USER:-dump}
MATRIXONE_PASSWORD: ${MATRIXONE_PASSWORD:-111}
MATRIXONE_DATABASE: ${MATRIXONE_DATABASE:-dify}
TIDB_ON_QDRANT_URL: ${TIDB_ON_QDRANT_URL:-http://127.0.0.1}
TIDB_ON_QDRANT_API_KEY: ${TIDB_ON_QDRANT_API_KEY:-dify}
TIDB_ON_QDRANT_CLIENT_TIMEOUT: ${TIDB_ON_QDRANT_CLIENT_TIMEOUT:-20}
@ -1124,6 +1129,18 @@ services:
ports:
- ${MYSCALE_PORT:-8123}:${MYSCALE_PORT:-8123}
# Matrixone vector store.
matrixone:
hostname: matrixone
image: matrixorigin/matrixone:2.1.1
profiles:
- matrixone
restart: always
volumes:
- ./volumes/matrixone/data:/mo-data
ports:
- ${MATRIXONE_PORT:-6001}:${MATRIXONE_PORT:-6001}
# https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
# https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html#docker-prod-prerequisites
elasticsearch: