dify/api/tests/unit_tests/models/test_workflow.py
QuantumGhost 10b738a296
feat: Persist Variables for Enhanced Debugging Workflow (#20699)
This pull request introduces a feature aimed at improving the debugging experience during workflow editing. With the addition of variable persistence, the system will automatically retain the output variables from previously executed nodes. These persisted variables can then be reused when debugging subsequent nodes, eliminating the need for repetitive manual input.

By streamlining this aspect of the workflow, the feature minimizes user errors and significantly reduces debugging effort, offering a smoother and more efficient experience.

Key highlights of this change:

- Automatic persistence of output variables for executed nodes.
- Reuse of persisted variables to simplify input steps for nodes requiring them (e.g., `code`, `template`, `variable_assigner`).
- Enhanced debugging experience with reduced friction.

Closes #19735.
2025-06-24 09:05:29 +08:00

315 lines
11 KiB
Python

import dataclasses
import json
from unittest import mock
from uuid import uuid4
from constants import HIDDEN_VALUE
from core.file.enums import FileTransferMethod, FileType
from core.file.models import File
from core.variables import FloatVariable, IntegerVariable, SecretVariable, StringVariable
from core.variables.segments import IntegerSegment, Segment
from factories.variable_factory import build_segment
from models.workflow import Workflow, WorkflowDraftVariable, WorkflowNodeExecutionModel, is_system_variable_editable
def test_environment_variables():
# tenant_id context variable removed - using current_user.current_tenant_id directly
# Create a Workflow instance
workflow = Workflow(
tenant_id="tenant_id",
app_id="app_id",
type="workflow",
version="draft",
graph="{}",
features="{}",
created_by="account_id",
environment_variables=[],
conversation_variables=[],
)
# Create some EnvironmentVariable instances
variable1 = StringVariable.model_validate(
{"name": "var1", "value": "value1", "id": str(uuid4()), "selector": ["env", "var1"]}
)
variable2 = IntegerVariable.model_validate(
{"name": "var2", "value": 123, "id": str(uuid4()), "selector": ["env", "var2"]}
)
variable3 = SecretVariable.model_validate(
{"name": "var3", "value": "secret", "id": str(uuid4()), "selector": ["env", "var3"]}
)
variable4 = FloatVariable.model_validate(
{"name": "var4", "value": 3.14, "id": str(uuid4()), "selector": ["env", "var4"]}
)
# Mock current_user as an EndUser
mock_user = mock.Mock()
mock_user.tenant_id = "tenant_id"
with (
mock.patch("core.helper.encrypter.encrypt_token", return_value="encrypted_token"),
mock.patch("core.helper.encrypter.decrypt_token", return_value="secret"),
mock.patch("models.workflow.current_user", mock_user),
):
# Set the environment_variables property of the Workflow instance
variables = [variable1, variable2, variable3, variable4]
workflow.environment_variables = variables
# Get the environment_variables property and assert its value
assert workflow.environment_variables == variables
def test_update_environment_variables():
# tenant_id context variable removed - using current_user.current_tenant_id directly
# Create a Workflow instance
workflow = Workflow(
tenant_id="tenant_id",
app_id="app_id",
type="workflow",
version="draft",
graph="{}",
features="{}",
created_by="account_id",
environment_variables=[],
conversation_variables=[],
)
# Create some EnvironmentVariable instances
variable1 = StringVariable.model_validate(
{"name": "var1", "value": "value1", "id": str(uuid4()), "selector": ["env", "var1"]}
)
variable2 = IntegerVariable.model_validate(
{"name": "var2", "value": 123, "id": str(uuid4()), "selector": ["env", "var2"]}
)
variable3 = SecretVariable.model_validate(
{"name": "var3", "value": "secret", "id": str(uuid4()), "selector": ["env", "var3"]}
)
variable4 = FloatVariable.model_validate(
{"name": "var4", "value": 3.14, "id": str(uuid4()), "selector": ["env", "var4"]}
)
# Mock current_user as an EndUser
mock_user = mock.Mock()
mock_user.tenant_id = "tenant_id"
with (
mock.patch("core.helper.encrypter.encrypt_token", return_value="encrypted_token"),
mock.patch("core.helper.encrypter.decrypt_token", return_value="secret"),
mock.patch("models.workflow.current_user", mock_user),
):
variables = [variable1, variable2, variable3, variable4]
# Set the environment_variables property of the Workflow instance
workflow.environment_variables = variables
assert workflow.environment_variables == [variable1, variable2, variable3, variable4]
# Update the name of variable3 and keep the value as it is
variables[2] = variable3.model_copy(
update={
"name": "new name",
"value": HIDDEN_VALUE,
}
)
workflow.environment_variables = variables
assert workflow.environment_variables[2].name == "new name"
assert workflow.environment_variables[2].value == variable3.value
def test_to_dict():
# tenant_id context variable removed - using current_user.current_tenant_id directly
# Create a Workflow instance
workflow = Workflow(
tenant_id="tenant_id",
app_id="app_id",
type="workflow",
version="draft",
graph="{}",
features="{}",
created_by="account_id",
environment_variables=[],
conversation_variables=[],
)
# Create some EnvironmentVariable instances
# Mock current_user as an EndUser
mock_user = mock.Mock()
mock_user.tenant_id = "tenant_id"
with (
mock.patch("core.helper.encrypter.encrypt_token", return_value="encrypted_token"),
mock.patch("core.helper.encrypter.decrypt_token", return_value="secret"),
mock.patch("models.workflow.current_user", mock_user),
):
# Set the environment_variables property of the Workflow instance
workflow.environment_variables = [
SecretVariable.model_validate({"name": "secret", "value": "secret", "id": str(uuid4())}),
StringVariable.model_validate({"name": "text", "value": "text", "id": str(uuid4())}),
]
workflow_dict = workflow.to_dict()
assert workflow_dict["environment_variables"][0]["value"] == ""
assert workflow_dict["environment_variables"][1]["value"] == "text"
workflow_dict = workflow.to_dict(include_secret=True)
assert workflow_dict["environment_variables"][0]["value"] == "secret"
assert workflow_dict["environment_variables"][1]["value"] == "text"
class TestWorkflowNodeExecution:
def test_execution_metadata_dict(self):
node_exec = WorkflowNodeExecutionModel()
node_exec.execution_metadata = None
assert node_exec.execution_metadata_dict == {}
original = {"a": 1, "b": ["2"]}
node_exec.execution_metadata = json.dumps(original)
assert node_exec.execution_metadata_dict == original
class TestIsSystemVariableEditable:
def test_is_system_variable(self):
cases = [
("query", True),
("files", True),
("dialogue_count", False),
("conversation_id", False),
("user_id", False),
("app_id", False),
("workflow_id", False),
("workflow_run_id", False),
]
for name, editable in cases:
assert editable == is_system_variable_editable(name)
assert is_system_variable_editable("invalid_or_new_system_variable") == False
class TestWorkflowDraftVariableGetValue:
def test_get_value_by_case(self):
@dataclasses.dataclass
class TestCase:
name: str
value: Segment
tenant_id = "test_tenant_id"
test_file = File(
tenant_id=tenant_id,
type=FileType.IMAGE,
transfer_method=FileTransferMethod.REMOTE_URL,
remote_url="https://example.com/example.jpg",
filename="example.jpg",
extension=".jpg",
mime_type="image/jpeg",
size=100,
)
cases: list[TestCase] = [
TestCase(
name="number/int",
value=build_segment(1),
),
TestCase(
name="number/float",
value=build_segment(1.0),
),
TestCase(
name="string",
value=build_segment("a"),
),
TestCase(
name="object",
value=build_segment({}),
),
TestCase(
name="file",
value=build_segment(test_file),
),
TestCase(
name="array[any]",
value=build_segment([1, "a"]),
),
TestCase(
name="array[string]",
value=build_segment(["a", "b"]),
),
TestCase(
name="array[number]/int",
value=build_segment([1, 2]),
),
TestCase(
name="array[number]/float",
value=build_segment([1.0, 2.0]),
),
TestCase(
name="array[number]/mixed",
value=build_segment([1, 2.0]),
),
TestCase(
name="array[object]",
value=build_segment([{}, {"a": 1}]),
),
TestCase(
name="none",
value=build_segment(None),
),
]
for idx, c in enumerate(cases, 1):
fail_msg = f"test case {c.name} failed, index={idx}"
draft_var = WorkflowDraftVariable()
draft_var.set_value(c.value)
assert c.value == draft_var.get_value(), fail_msg
def test_file_variable_preserves_all_fields(self):
"""Test that File type variables preserve all fields during encoding/decoding."""
tenant_id = "test_tenant_id"
# Create a File with specific field values
test_file = File(
id="test_file_id",
tenant_id=tenant_id,
type=FileType.IMAGE,
transfer_method=FileTransferMethod.REMOTE_URL,
remote_url="https://example.com/test.jpg",
filename="test.jpg",
extension=".jpg",
mime_type="image/jpeg",
size=12345, # Specific size to test preservation
storage_key="test_storage_key",
)
# Create a FileSegment and WorkflowDraftVariable
file_segment = build_segment(test_file)
draft_var = WorkflowDraftVariable()
draft_var.set_value(file_segment)
# Retrieve the value and verify all fields are preserved
retrieved_segment = draft_var.get_value()
retrieved_file = retrieved_segment.value
# Verify all important fields are preserved
assert retrieved_file.id == test_file.id
assert retrieved_file.tenant_id == test_file.tenant_id
assert retrieved_file.type == test_file.type
assert retrieved_file.transfer_method == test_file.transfer_method
assert retrieved_file.remote_url == test_file.remote_url
assert retrieved_file.filename == test_file.filename
assert retrieved_file.extension == test_file.extension
assert retrieved_file.mime_type == test_file.mime_type
assert retrieved_file.size == test_file.size # This was the main issue being fixed
# Note: storage_key is not serialized in model_dump() so it won't be preserved
# Verify the segments have the same type and the important fields match
assert file_segment.value_type == retrieved_segment.value_type
def test_get_and_set_value(self):
draft_var = WorkflowDraftVariable()
int_var = IntegerSegment(value=1)
draft_var.set_value(int_var)
value = draft_var.get_value()
assert value == int_var