mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-31 02:42:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1181 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1181 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import json
 | |
| import math
 | |
| import re
 | |
| import threading
 | |
| from collections import Counter, defaultdict
 | |
| from collections.abc import Generator, Mapping
 | |
| from typing import Any, Optional, Union, cast
 | |
| 
 | |
| from flask import Flask, current_app
 | |
| from sqlalchemy import Integer, and_, or_, text
 | |
| from sqlalchemy import cast as sqlalchemy_cast
 | |
| 
 | |
| from core.app.app_config.entities import (
 | |
|     DatasetEntity,
 | |
|     DatasetRetrieveConfigEntity,
 | |
|     MetadataFilteringCondition,
 | |
|     ModelConfig,
 | |
| )
 | |
| from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
 | |
| from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
 | |
| from core.entities.agent_entities import PlanningStrategy
 | |
| from core.entities.model_entities import ModelStatus
 | |
| from core.memory.token_buffer_memory import TokenBufferMemory
 | |
| from core.model_manager import ModelInstance, ModelManager
 | |
| from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
 | |
| from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageRole, PromptMessageTool
 | |
| from core.model_runtime.entities.model_entities import ModelFeature, ModelType
 | |
| from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
 | |
| from core.ops.entities.trace_entity import TraceTaskName
 | |
| from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
 | |
| from core.ops.utils import measure_time
 | |
| from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
 | |
| from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate
 | |
| from core.prompt.simple_prompt_transform import ModelMode
 | |
| from core.rag.data_post_processor.data_post_processor import DataPostProcessor
 | |
| from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
 | |
| from core.rag.datasource.retrieval_service import RetrievalService
 | |
| from core.rag.entities.context_entities import DocumentContext
 | |
| from core.rag.entities.metadata_entities import Condition, MetadataCondition
 | |
| from core.rag.index_processor.constant.index_type import IndexType
 | |
| from core.rag.models.document import Document
 | |
| from core.rag.rerank.rerank_type import RerankMode
 | |
| from core.rag.retrieval.retrieval_methods import RetrievalMethod
 | |
| from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
 | |
| from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
 | |
| from core.rag.retrieval.template_prompts import (
 | |
|     METADATA_FILTER_ASSISTANT_PROMPT_1,
 | |
|     METADATA_FILTER_ASSISTANT_PROMPT_2,
 | |
|     METADATA_FILTER_COMPLETION_PROMPT,
 | |
|     METADATA_FILTER_SYSTEM_PROMPT,
 | |
|     METADATA_FILTER_USER_PROMPT_1,
 | |
|     METADATA_FILTER_USER_PROMPT_2,
 | |
|     METADATA_FILTER_USER_PROMPT_3,
 | |
| )
 | |
| from core.tools.utils.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
 | |
| from extensions.ext_database import db
 | |
| from libs.json_in_md_parser import parse_and_check_json_markdown
 | |
| from models.dataset import ChildChunk, Dataset, DatasetMetadata, DatasetQuery, DocumentSegment
 | |
| from models.dataset import Document as DatasetDocument
 | |
| from services.external_knowledge_service import ExternalDatasetService
 | |
| 
 | |
| default_retrieval_model: dict[str, Any] = {
 | |
|     "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
 | |
|     "reranking_enable": False,
 | |
|     "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
 | |
|     "top_k": 2,
 | |
|     "score_threshold_enabled": False,
 | |
| }
 | |
| 
 | |
| 
 | |
| class DatasetRetrieval:
 | |
|     def __init__(self, application_generate_entity=None):
 | |
|         self.application_generate_entity = application_generate_entity
 | |
| 
 | |
|     def retrieve(
 | |
|         self,
 | |
|         app_id: str,
 | |
|         user_id: str,
 | |
|         tenant_id: str,
 | |
|         model_config: ModelConfigWithCredentialsEntity,
 | |
|         config: DatasetEntity,
 | |
|         query: str,
 | |
|         invoke_from: InvokeFrom,
 | |
|         show_retrieve_source: bool,
 | |
|         hit_callback: DatasetIndexToolCallbackHandler,
 | |
|         message_id: str,
 | |
|         memory: Optional[TokenBufferMemory] = None,
 | |
|         inputs: Optional[Mapping[str, Any]] = None,
 | |
|     ) -> Optional[str]:
 | |
|         """
 | |
|         Retrieve dataset.
 | |
|         :param app_id: app_id
 | |
|         :param user_id: user_id
 | |
|         :param tenant_id: tenant id
 | |
|         :param model_config: model config
 | |
|         :param config: dataset config
 | |
|         :param query: query
 | |
|         :param invoke_from: invoke from
 | |
|         :param show_retrieve_source: show retrieve source
 | |
|         :param hit_callback: hit callback
 | |
|         :param message_id: message id
 | |
|         :param memory: memory
 | |
|         :param inputs: inputs
 | |
|         :return:
 | |
|         """
 | |
|         dataset_ids = config.dataset_ids
 | |
|         if len(dataset_ids) == 0:
 | |
|             return None
 | |
|         retrieve_config = config.retrieve_config
 | |
| 
 | |
|         # check model is support tool calling
 | |
|         model_type_instance = model_config.provider_model_bundle.model_type_instance
 | |
|         model_type_instance = cast(LargeLanguageModel, model_type_instance)
 | |
| 
 | |
|         model_manager = ModelManager()
 | |
|         model_instance = model_manager.get_model_instance(
 | |
|             tenant_id=tenant_id, model_type=ModelType.LLM, provider=model_config.provider, model=model_config.model
 | |
|         )
 | |
| 
 | |
|         # get model schema
 | |
|         model_schema = model_type_instance.get_model_schema(
 | |
|             model=model_config.model, credentials=model_config.credentials
 | |
|         )
 | |
| 
 | |
|         if not model_schema:
 | |
|             return None
 | |
| 
 | |
|         planning_strategy = PlanningStrategy.REACT_ROUTER
 | |
|         features = model_schema.features
 | |
|         if features:
 | |
|             if ModelFeature.TOOL_CALL in features or ModelFeature.MULTI_TOOL_CALL in features:
 | |
|                 planning_strategy = PlanningStrategy.ROUTER
 | |
|         available_datasets = []
 | |
|         for dataset_id in dataset_ids:
 | |
|             # get dataset from dataset id
 | |
|             dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 | |
| 
 | |
|             # pass if dataset is not available
 | |
|             if not dataset:
 | |
|                 continue
 | |
| 
 | |
|             # pass if dataset is not available
 | |
|             if dataset and dataset.available_document_count == 0 and dataset.provider != "external":
 | |
|                 continue
 | |
| 
 | |
|             available_datasets.append(dataset)
 | |
|         if inputs:
 | |
|             inputs = {key: str(value) for key, value in inputs.items()}
 | |
|         else:
 | |
|             inputs = {}
 | |
|         available_datasets_ids = [dataset.id for dataset in available_datasets]
 | |
|         metadata_filter_document_ids, metadata_condition = self._get_metadata_filter_condition(
 | |
|             available_datasets_ids,
 | |
|             query,
 | |
|             tenant_id,
 | |
|             user_id,
 | |
|             retrieve_config.metadata_filtering_mode,  # type: ignore
 | |
|             retrieve_config.metadata_model_config,  # type: ignore
 | |
|             retrieve_config.metadata_filtering_conditions,
 | |
|             inputs,
 | |
|         )
 | |
| 
 | |
|         all_documents = []
 | |
|         user_from = "account" if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end_user"
 | |
|         if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
 | |
|             all_documents = self.single_retrieve(
 | |
|                 app_id,
 | |
|                 tenant_id,
 | |
|                 user_id,
 | |
|                 user_from,
 | |
|                 available_datasets,
 | |
|                 query,
 | |
|                 model_instance,
 | |
|                 model_config,
 | |
|                 planning_strategy,
 | |
|                 message_id,
 | |
|                 metadata_filter_document_ids,
 | |
|                 metadata_condition,
 | |
|             )
 | |
|         elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
 | |
|             all_documents = self.multiple_retrieve(
 | |
|                 app_id,
 | |
|                 tenant_id,
 | |
|                 user_id,
 | |
|                 user_from,
 | |
|                 available_datasets,
 | |
|                 query,
 | |
|                 retrieve_config.top_k or 0,
 | |
|                 retrieve_config.score_threshold or 0,
 | |
|                 retrieve_config.rerank_mode or "reranking_model",
 | |
|                 retrieve_config.reranking_model,
 | |
|                 retrieve_config.weights,
 | |
|                 retrieve_config.reranking_enabled or True,
 | |
|                 message_id,
 | |
|                 metadata_filter_document_ids,
 | |
|                 metadata_condition,
 | |
|             )
 | |
| 
 | |
|         dify_documents = [item for item in all_documents if item.provider == "dify"]
 | |
|         external_documents = [item for item in all_documents if item.provider == "external"]
 | |
|         document_context_list = []
 | |
|         retrieval_resource_list = []
 | |
|         # deal with external documents
 | |
|         for item in external_documents:
 | |
|             document_context_list.append(DocumentContext(content=item.page_content, score=item.metadata.get("score")))
 | |
|             source = {
 | |
|                 "dataset_id": item.metadata.get("dataset_id"),
 | |
|                 "dataset_name": item.metadata.get("dataset_name"),
 | |
|                 "document_id": item.metadata.get("document_id") or item.metadata.get("title"),
 | |
|                 "document_name": item.metadata.get("title"),
 | |
|                 "data_source_type": "external",
 | |
|                 "retriever_from": invoke_from.to_source(),
 | |
|                 "score": item.metadata.get("score"),
 | |
|                 "content": item.page_content,
 | |
|             }
 | |
|             retrieval_resource_list.append(source)
 | |
|         # deal with dify documents
 | |
|         if dify_documents:
 | |
|             records = RetrievalService.format_retrieval_documents(dify_documents)
 | |
|             if records:
 | |
|                 for record in records:
 | |
|                     segment = record.segment
 | |
|                     if segment.answer:
 | |
|                         document_context_list.append(
 | |
|                             DocumentContext(
 | |
|                                 content=f"question:{segment.get_sign_content()} answer:{segment.answer}",
 | |
|                                 score=record.score,
 | |
|                             )
 | |
|                         )
 | |
|                     else:
 | |
|                         document_context_list.append(
 | |
|                             DocumentContext(
 | |
|                                 content=segment.get_sign_content(),
 | |
|                                 score=record.score,
 | |
|                             )
 | |
|                         )
 | |
|                 if show_retrieve_source:
 | |
|                     for record in records:
 | |
|                         segment = record.segment
 | |
|                         dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
 | |
|                         document = DatasetDocument.query.filter(
 | |
|                             DatasetDocument.id == segment.document_id,
 | |
|                             DatasetDocument.enabled == True,
 | |
|                             DatasetDocument.archived == False,
 | |
|                         ).first()
 | |
|                         if dataset and document:
 | |
|                             source = {
 | |
|                                 "dataset_id": dataset.id,
 | |
|                                 "dataset_name": dataset.name,
 | |
|                                 "document_id": document.id,
 | |
|                                 "document_name": document.name,
 | |
|                                 "data_source_type": document.data_source_type,
 | |
|                                 "segment_id": segment.id,
 | |
|                                 "retriever_from": invoke_from.to_source(),
 | |
|                                 "score": record.score or 0.0,
 | |
|                                 "doc_metadata": document.doc_metadata,
 | |
|                             }
 | |
| 
 | |
|                             if invoke_from.to_source() == "dev":
 | |
|                                 source["hit_count"] = segment.hit_count
 | |
|                                 source["word_count"] = segment.word_count
 | |
|                                 source["segment_position"] = segment.position
 | |
|                                 source["index_node_hash"] = segment.index_node_hash
 | |
|                             if segment.answer:
 | |
|                                 source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
 | |
|                             else:
 | |
|                                 source["content"] = segment.content
 | |
|                             retrieval_resource_list.append(source)
 | |
|         if hit_callback and retrieval_resource_list:
 | |
|             retrieval_resource_list = sorted(retrieval_resource_list, key=lambda x: x.get("score") or 0.0, reverse=True)
 | |
|             for position, item in enumerate(retrieval_resource_list, start=1):
 | |
|                 item["position"] = position
 | |
|             hit_callback.return_retriever_resource_info(retrieval_resource_list)
 | |
|         if document_context_list:
 | |
|             document_context_list = sorted(document_context_list, key=lambda x: x.score or 0.0, reverse=True)
 | |
|             return str("\n".join([document_context.content for document_context in document_context_list]))
 | |
|         return ""
 | |
| 
 | |
|     def single_retrieve(
 | |
|         self,
 | |
|         app_id: str,
 | |
|         tenant_id: str,
 | |
|         user_id: str,
 | |
|         user_from: str,
 | |
|         available_datasets: list,
 | |
|         query: str,
 | |
|         model_instance: ModelInstance,
 | |
|         model_config: ModelConfigWithCredentialsEntity,
 | |
|         planning_strategy: PlanningStrategy,
 | |
|         message_id: Optional[str] = None,
 | |
|         metadata_filter_document_ids: Optional[dict[str, list[str]]] = None,
 | |
|         metadata_condition: Optional[MetadataCondition] = None,
 | |
|     ):
 | |
|         tools = []
 | |
|         for dataset in available_datasets:
 | |
|             description = dataset.description
 | |
|             if not description:
 | |
|                 description = "useful for when you want to answer queries about the " + dataset.name
 | |
| 
 | |
|             description = description.replace("\n", "").replace("\r", "")
 | |
|             message_tool = PromptMessageTool(
 | |
|                 name=dataset.id,
 | |
|                 description=description,
 | |
|                 parameters={
 | |
|                     "type": "object",
 | |
|                     "properties": {},
 | |
|                     "required": [],
 | |
|                 },
 | |
|             )
 | |
|             tools.append(message_tool)
 | |
|         dataset_id = None
 | |
|         if planning_strategy == PlanningStrategy.REACT_ROUTER:
 | |
|             react_multi_dataset_router = ReactMultiDatasetRouter()
 | |
|             dataset_id = react_multi_dataset_router.invoke(
 | |
|                 query, tools, model_config, model_instance, user_id, tenant_id
 | |
|             )
 | |
| 
 | |
|         elif planning_strategy == PlanningStrategy.ROUTER:
 | |
|             function_call_router = FunctionCallMultiDatasetRouter()
 | |
|             dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)
 | |
| 
 | |
|         if dataset_id:
 | |
|             # get retrieval model config
 | |
|             dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 | |
|             if dataset:
 | |
|                 results = []
 | |
|                 if dataset.provider == "external":
 | |
|                     external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
 | |
|                         tenant_id=dataset.tenant_id,
 | |
|                         dataset_id=dataset_id,
 | |
|                         query=query,
 | |
|                         external_retrieval_parameters=dataset.retrieval_model,
 | |
|                         metadata_condition=metadata_condition,
 | |
|                     )
 | |
|                     for external_document in external_documents:
 | |
|                         document = Document(
 | |
|                             page_content=external_document.get("content"),
 | |
|                             metadata=external_document.get("metadata"),
 | |
|                             provider="external",
 | |
|                         )
 | |
|                         if document.metadata is not None:
 | |
|                             document.metadata["score"] = external_document.get("score")
 | |
|                             document.metadata["title"] = external_document.get("title")
 | |
|                             document.metadata["dataset_id"] = dataset_id
 | |
|                             document.metadata["dataset_name"] = dataset.name
 | |
|                         results.append(document)
 | |
|                 else:
 | |
|                     if metadata_condition and not metadata_filter_document_ids:
 | |
|                         return []
 | |
|                     document_ids_filter = None
 | |
|                     if metadata_filter_document_ids:
 | |
|                         document_ids = metadata_filter_document_ids.get(dataset.id, [])
 | |
|                         if document_ids:
 | |
|                             document_ids_filter = document_ids
 | |
|                         else:
 | |
|                             return []
 | |
|                     retrieval_model_config = dataset.retrieval_model or default_retrieval_model
 | |
| 
 | |
|                     # get top k
 | |
|                     top_k = retrieval_model_config["top_k"]
 | |
|                     # get retrieval method
 | |
|                     if dataset.indexing_technique == "economy":
 | |
|                         retrieval_method = "keyword_search"
 | |
|                     else:
 | |
|                         retrieval_method = retrieval_model_config["search_method"]
 | |
|                     # get reranking model
 | |
|                     reranking_model = (
 | |
|                         retrieval_model_config["reranking_model"]
 | |
|                         if retrieval_model_config["reranking_enable"]
 | |
|                         else None
 | |
|                     )
 | |
|                     # get score threshold
 | |
|                     score_threshold = 0.0
 | |
|                     score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
 | |
|                     if score_threshold_enabled:
 | |
|                         score_threshold = retrieval_model_config.get("score_threshold", 0.0)
 | |
| 
 | |
|                     with measure_time() as timer:
 | |
|                         results = RetrievalService.retrieve(
 | |
|                             retrieval_method=retrieval_method,
 | |
|                             dataset_id=dataset.id,
 | |
|                             query=query,
 | |
|                             top_k=top_k,
 | |
|                             score_threshold=score_threshold,
 | |
|                             reranking_model=reranking_model,
 | |
|                             reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
 | |
|                             weights=retrieval_model_config.get("weights", None),
 | |
|                             document_ids_filter=document_ids_filter,
 | |
|                         )
 | |
|                 self._on_query(query, [dataset_id], app_id, user_from, user_id)
 | |
| 
 | |
|                 if results:
 | |
|                     self._on_retrieval_end(results, message_id, timer)
 | |
| 
 | |
|                 return results
 | |
|         return []
 | |
| 
 | |
|     def multiple_retrieve(
 | |
|         self,
 | |
|         app_id: str,
 | |
|         tenant_id: str,
 | |
|         user_id: str,
 | |
|         user_from: str,
 | |
|         available_datasets: list,
 | |
|         query: str,
 | |
|         top_k: int,
 | |
|         score_threshold: float,
 | |
|         reranking_mode: str,
 | |
|         reranking_model: Optional[dict] = None,
 | |
|         weights: Optional[dict[str, Any]] = None,
 | |
|         reranking_enable: bool = True,
 | |
|         message_id: Optional[str] = None,
 | |
|         metadata_filter_document_ids: Optional[dict[str, list[str]]] = None,
 | |
|         metadata_condition: Optional[MetadataCondition] = None,
 | |
|     ):
 | |
|         if not available_datasets:
 | |
|             return []
 | |
|         threads = []
 | |
|         all_documents: list[Document] = []
 | |
|         dataset_ids = [dataset.id for dataset in available_datasets]
 | |
|         index_type_check = all(
 | |
|             item.indexing_technique == available_datasets[0].indexing_technique for item in available_datasets
 | |
|         )
 | |
|         if not index_type_check and (not reranking_enable or reranking_mode != RerankMode.RERANKING_MODEL):
 | |
|             raise ValueError(
 | |
|                 "The configured knowledge base list have different indexing technique, please set reranking model."
 | |
|             )
 | |
|         index_type = available_datasets[0].indexing_technique
 | |
|         if index_type == "high_quality":
 | |
|             embedding_model_check = all(
 | |
|                 item.embedding_model == available_datasets[0].embedding_model for item in available_datasets
 | |
|             )
 | |
|             embedding_model_provider_check = all(
 | |
|                 item.embedding_model_provider == available_datasets[0].embedding_model_provider
 | |
|                 for item in available_datasets
 | |
|             )
 | |
|             if (
 | |
|                 reranking_enable
 | |
|                 and reranking_mode == "weighted_score"
 | |
|                 and (not embedding_model_check or not embedding_model_provider_check)
 | |
|             ):
 | |
|                 raise ValueError(
 | |
|                     "The configured knowledge base list have different embedding model, please set reranking model."
 | |
|                 )
 | |
|             if reranking_enable and reranking_mode == RerankMode.WEIGHTED_SCORE:
 | |
|                 if weights is not None:
 | |
|                     weights["vector_setting"]["embedding_provider_name"] = available_datasets[
 | |
|                         0
 | |
|                     ].embedding_model_provider
 | |
|                     weights["vector_setting"]["embedding_model_name"] = available_datasets[0].embedding_model
 | |
| 
 | |
|         for dataset in available_datasets:
 | |
|             index_type = dataset.indexing_technique
 | |
|             document_ids_filter = None
 | |
|             if dataset.provider != "external":
 | |
|                 if metadata_condition and not metadata_filter_document_ids:
 | |
|                     continue
 | |
|                 if metadata_filter_document_ids:
 | |
|                     document_ids = metadata_filter_document_ids.get(dataset.id, [])
 | |
|                     if document_ids:
 | |
|                         document_ids_filter = document_ids
 | |
|                     else:
 | |
|                         continue
 | |
|             retrieval_thread = threading.Thread(
 | |
|                 target=self._retriever,
 | |
|                 kwargs={
 | |
|                     "flask_app": current_app._get_current_object(),  # type: ignore
 | |
|                     "dataset_id": dataset.id,
 | |
|                     "query": query,
 | |
|                     "top_k": top_k,
 | |
|                     "all_documents": all_documents,
 | |
|                     "document_ids_filter": document_ids_filter,
 | |
|                     "metadata_condition": metadata_condition,
 | |
|                 },
 | |
|             )
 | |
|             threads.append(retrieval_thread)
 | |
|             retrieval_thread.start()
 | |
|         for thread in threads:
 | |
|             thread.join()
 | |
| 
 | |
|         with measure_time() as timer:
 | |
|             if reranking_enable:
 | |
|                 # do rerank for searched documents
 | |
|                 data_post_processor = DataPostProcessor(tenant_id, reranking_mode, reranking_model, weights, False)
 | |
| 
 | |
|                 all_documents = data_post_processor.invoke(
 | |
|                     query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
 | |
|                 )
 | |
|             else:
 | |
|                 if index_type == "economy":
 | |
|                     all_documents = self.calculate_keyword_score(query, all_documents, top_k)
 | |
|                 elif index_type == "high_quality":
 | |
|                     all_documents = self.calculate_vector_score(all_documents, top_k, score_threshold)
 | |
| 
 | |
|         self._on_query(query, dataset_ids, app_id, user_from, user_id)
 | |
| 
 | |
|         if all_documents:
 | |
|             self._on_retrieval_end(all_documents, message_id, timer)
 | |
| 
 | |
|         return all_documents
 | |
| 
 | |
|     def _on_retrieval_end(
 | |
|         self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
 | |
|     ) -> None:
 | |
|         """Handle retrieval end."""
 | |
|         dify_documents = [document for document in documents if document.provider == "dify"]
 | |
|         for document in dify_documents:
 | |
|             if document.metadata is not None:
 | |
|                 dataset_document = DatasetDocument.query.filter(
 | |
|                     DatasetDocument.id == document.metadata["document_id"]
 | |
|                 ).first()
 | |
|                 if dataset_document:
 | |
|                     if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
 | |
|                         child_chunk = ChildChunk.query.filter(
 | |
|                             ChildChunk.index_node_id == document.metadata["doc_id"],
 | |
|                             ChildChunk.dataset_id == dataset_document.dataset_id,
 | |
|                             ChildChunk.document_id == dataset_document.id,
 | |
|                         ).first()
 | |
|                         if child_chunk:
 | |
|                             segment = DocumentSegment.query.filter(DocumentSegment.id == child_chunk.segment_id).update(
 | |
|                                 {DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False
 | |
|                             )
 | |
|                             db.session.commit()
 | |
|                     else:
 | |
|                         query = db.session.query(DocumentSegment).filter(
 | |
|                             DocumentSegment.index_node_id == document.metadata["doc_id"]
 | |
|                         )
 | |
| 
 | |
|                         # if 'dataset_id' in document.metadata:
 | |
|                         if "dataset_id" in document.metadata:
 | |
|                             query = query.filter(DocumentSegment.dataset_id == document.metadata["dataset_id"])
 | |
| 
 | |
|                         # add hit count to document segment
 | |
|                         query.update(
 | |
|                             {DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False
 | |
|                         )
 | |
| 
 | |
|                     db.session.commit()
 | |
| 
 | |
|         # get tracing instance
 | |
|         trace_manager: TraceQueueManager | None = (
 | |
|             self.application_generate_entity.trace_manager if self.application_generate_entity else None
 | |
|         )
 | |
|         if trace_manager:
 | |
|             trace_manager.add_trace_task(
 | |
|                 TraceTask(
 | |
|                     TraceTaskName.DATASET_RETRIEVAL_TRACE, message_id=message_id, documents=documents, timer=timer
 | |
|                 )
 | |
|             )
 | |
| 
 | |
|     def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
 | |
|         """
 | |
|         Handle query.
 | |
|         """
 | |
|         if not query:
 | |
|             return
 | |
|         dataset_queries = []
 | |
|         for dataset_id in dataset_ids:
 | |
|             dataset_query = DatasetQuery(
 | |
|                 dataset_id=dataset_id,
 | |
|                 content=query,
 | |
|                 source="app",
 | |
|                 source_app_id=app_id,
 | |
|                 created_by_role=user_from,
 | |
|                 created_by=user_id,
 | |
|             )
 | |
|             dataset_queries.append(dataset_query)
 | |
|         if dataset_queries:
 | |
|             db.session.add_all(dataset_queries)
 | |
|         db.session.commit()
 | |
| 
 | |
|     def _retriever(
 | |
|         self,
 | |
|         flask_app: Flask,
 | |
|         dataset_id: str,
 | |
|         query: str,
 | |
|         top_k: int,
 | |
|         all_documents: list,
 | |
|         document_ids_filter: Optional[list[str]] = None,
 | |
|         metadata_condition: Optional[MetadataCondition] = None,
 | |
|     ):
 | |
|         with flask_app.app_context():
 | |
|             dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 | |
| 
 | |
|             if not dataset:
 | |
|                 return []
 | |
| 
 | |
|             if dataset.provider == "external":
 | |
|                 external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
 | |
|                     tenant_id=dataset.tenant_id,
 | |
|                     dataset_id=dataset_id,
 | |
|                     query=query,
 | |
|                     external_retrieval_parameters=dataset.retrieval_model,
 | |
|                     metadata_condition=metadata_condition,
 | |
|                 )
 | |
|                 for external_document in external_documents:
 | |
|                     document = Document(
 | |
|                         page_content=external_document.get("content"),
 | |
|                         metadata=external_document.get("metadata"),
 | |
|                         provider="external",
 | |
|                     )
 | |
|                     if document.metadata is not None:
 | |
|                         document.metadata["score"] = external_document.get("score")
 | |
|                         document.metadata["title"] = external_document.get("title")
 | |
|                         document.metadata["dataset_id"] = dataset_id
 | |
|                         document.metadata["dataset_name"] = dataset.name
 | |
|                     all_documents.append(document)
 | |
|             else:
 | |
|                 # get retrieval model , if the model is not setting , using default
 | |
|                 retrieval_model = dataset.retrieval_model or default_retrieval_model
 | |
| 
 | |
|                 if dataset.indexing_technique == "economy":
 | |
|                     # use keyword table query
 | |
|                     documents = RetrievalService.retrieve(
 | |
|                         retrieval_method="keyword_search",
 | |
|                         dataset_id=dataset.id,
 | |
|                         query=query,
 | |
|                         top_k=top_k,
 | |
|                         document_ids_filter=document_ids_filter,
 | |
|                     )
 | |
|                     if documents:
 | |
|                         all_documents.extend(documents)
 | |
|                 else:
 | |
|                     if top_k > 0:
 | |
|                         # retrieval source
 | |
|                         documents = RetrievalService.retrieve(
 | |
|                             retrieval_method=retrieval_model["search_method"],
 | |
|                             dataset_id=dataset.id,
 | |
|                             query=query,
 | |
|                             top_k=retrieval_model.get("top_k") or 2,
 | |
|                             score_threshold=retrieval_model.get("score_threshold", 0.0)
 | |
|                             if retrieval_model["score_threshold_enabled"]
 | |
|                             else 0.0,
 | |
|                             reranking_model=retrieval_model.get("reranking_model", None)
 | |
|                             if retrieval_model["reranking_enable"]
 | |
|                             else None,
 | |
|                             reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
 | |
|                             weights=retrieval_model.get("weights", None),
 | |
|                             document_ids_filter=document_ids_filter,
 | |
|                         )
 | |
| 
 | |
|                         all_documents.extend(documents)
 | |
| 
 | |
|     def to_dataset_retriever_tool(
 | |
|         self,
 | |
|         tenant_id: str,
 | |
|         dataset_ids: list[str],
 | |
|         retrieve_config: DatasetRetrieveConfigEntity,
 | |
|         return_resource: bool,
 | |
|         invoke_from: InvokeFrom,
 | |
|         hit_callback: DatasetIndexToolCallbackHandler,
 | |
|     ) -> Optional[list[DatasetRetrieverBaseTool]]:
 | |
|         """
 | |
|         A dataset tool is a tool that can be used to retrieve information from a dataset
 | |
|         :param tenant_id: tenant id
 | |
|         :param dataset_ids: dataset ids
 | |
|         :param retrieve_config: retrieve config
 | |
|         :param return_resource: return resource
 | |
|         :param invoke_from: invoke from
 | |
|         :param hit_callback: hit callback
 | |
|         """
 | |
|         tools = []
 | |
|         available_datasets = []
 | |
|         for dataset_id in dataset_ids:
 | |
|             # get dataset from dataset id
 | |
|             dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 | |
| 
 | |
|             # pass if dataset is not available
 | |
|             if not dataset:
 | |
|                 continue
 | |
| 
 | |
|             # pass if dataset is not available
 | |
|             if dataset and dataset.provider != "external" and dataset.available_document_count == 0:
 | |
|                 continue
 | |
| 
 | |
|             available_datasets.append(dataset)
 | |
| 
 | |
|         if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
 | |
|             # get retrieval model config
 | |
|             default_retrieval_model = {
 | |
|                 "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
 | |
|                 "reranking_enable": False,
 | |
|                 "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
 | |
|                 "top_k": 2,
 | |
|                 "score_threshold_enabled": False,
 | |
|             }
 | |
| 
 | |
|             for dataset in available_datasets:
 | |
|                 retrieval_model_config = dataset.retrieval_model or default_retrieval_model
 | |
| 
 | |
|                 # get top k
 | |
|                 top_k = retrieval_model_config["top_k"]
 | |
| 
 | |
|                 # get score threshold
 | |
|                 score_threshold = None
 | |
|                 score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
 | |
|                 if score_threshold_enabled:
 | |
|                     score_threshold = retrieval_model_config.get("score_threshold")
 | |
| 
 | |
|                 from core.tools.utils.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
 | |
| 
 | |
|                 tool = DatasetRetrieverTool.from_dataset(
 | |
|                     dataset=dataset,
 | |
|                     top_k=top_k,
 | |
|                     score_threshold=score_threshold,
 | |
|                     hit_callbacks=[hit_callback],
 | |
|                     return_resource=return_resource,
 | |
|                     retriever_from=invoke_from.to_source(),
 | |
|                 )
 | |
| 
 | |
|                 tools.append(tool)
 | |
|         elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
 | |
|             from core.tools.utils.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
 | |
| 
 | |
|             if retrieve_config.reranking_model is None:
 | |
|                 raise ValueError("Reranking model is required for multiple retrieval")
 | |
| 
 | |
|             tool = DatasetMultiRetrieverTool.from_dataset(
 | |
|                 dataset_ids=[dataset.id for dataset in available_datasets],
 | |
|                 tenant_id=tenant_id,
 | |
|                 top_k=retrieve_config.top_k or 2,
 | |
|                 score_threshold=retrieve_config.score_threshold,
 | |
|                 hit_callbacks=[hit_callback],
 | |
|                 return_resource=return_resource,
 | |
|                 retriever_from=invoke_from.to_source(),
 | |
|                 reranking_provider_name=retrieve_config.reranking_model.get("reranking_provider_name"),
 | |
|                 reranking_model_name=retrieve_config.reranking_model.get("reranking_model_name"),
 | |
|             )
 | |
| 
 | |
|             tools.append(tool)
 | |
| 
 | |
|         return tools
 | |
| 
 | |
|     def calculate_keyword_score(self, query: str, documents: list[Document], top_k: int) -> list[Document]:
 | |
|         """
 | |
|         Calculate keywords scores
 | |
|         :param query: search query
 | |
|         :param documents: documents for reranking
 | |
|         :param top_k: top k
 | |
| 
 | |
|         :return:
 | |
|         """
 | |
|         keyword_table_handler = JiebaKeywordTableHandler()
 | |
|         query_keywords = keyword_table_handler.extract_keywords(query, None)
 | |
|         documents_keywords = []
 | |
|         for document in documents:
 | |
|             if document.metadata is not None:
 | |
|                 # get the document keywords
 | |
|                 document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
 | |
|                 document.metadata["keywords"] = document_keywords
 | |
|                 documents_keywords.append(document_keywords)
 | |
| 
 | |
|         # Counter query keywords(TF)
 | |
|         query_keyword_counts = Counter(query_keywords)
 | |
| 
 | |
|         # total documents
 | |
|         total_documents = len(documents)
 | |
| 
 | |
|         # calculate all documents' keywords IDF
 | |
|         all_keywords = set()
 | |
|         for document_keywords in documents_keywords:
 | |
|             all_keywords.update(document_keywords)
 | |
| 
 | |
|         keyword_idf = {}
 | |
|         for keyword in all_keywords:
 | |
|             # calculate include query keywords' documents
 | |
|             doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)
 | |
|             # IDF
 | |
|             keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1
 | |
| 
 | |
|         query_tfidf = {}
 | |
| 
 | |
|         for keyword, count in query_keyword_counts.items():
 | |
|             tf = count
 | |
|             idf = keyword_idf.get(keyword, 0)
 | |
|             query_tfidf[keyword] = tf * idf
 | |
| 
 | |
|         # calculate all documents' TF-IDF
 | |
|         documents_tfidf = []
 | |
|         for document_keywords in documents_keywords:
 | |
|             document_keyword_counts = Counter(document_keywords)
 | |
|             document_tfidf = {}
 | |
|             for keyword, count in document_keyword_counts.items():
 | |
|                 tf = count
 | |
|                 idf = keyword_idf.get(keyword, 0)
 | |
|                 document_tfidf[keyword] = tf * idf
 | |
|             documents_tfidf.append(document_tfidf)
 | |
| 
 | |
|         def cosine_similarity(vec1, vec2):
 | |
|             intersection = set(vec1.keys()) & set(vec2.keys())
 | |
|             numerator = sum(vec1[x] * vec2[x] for x in intersection)
 | |
| 
 | |
|             sum1 = sum(vec1[x] ** 2 for x in vec1)
 | |
|             sum2 = sum(vec2[x] ** 2 for x in vec2)
 | |
|             denominator = math.sqrt(sum1) * math.sqrt(sum2)
 | |
| 
 | |
|             if not denominator:
 | |
|                 return 0.0
 | |
|             else:
 | |
|                 return float(numerator) / denominator
 | |
| 
 | |
|         similarities = []
 | |
|         for document_tfidf in documents_tfidf:
 | |
|             similarity = cosine_similarity(query_tfidf, document_tfidf)
 | |
|             similarities.append(similarity)
 | |
| 
 | |
|         for document, score in zip(documents, similarities):
 | |
|             # format document
 | |
|             if document.metadata is not None:
 | |
|                 document.metadata["score"] = score
 | |
|         documents = sorted(documents, key=lambda x: x.metadata.get("score", 0) if x.metadata else 0, reverse=True)
 | |
|         return documents[:top_k] if top_k else documents
 | |
| 
 | |
|     def calculate_vector_score(
 | |
|         self, all_documents: list[Document], top_k: int, score_threshold: float
 | |
|     ) -> list[Document]:
 | |
|         filter_documents = []
 | |
|         for document in all_documents:
 | |
|             if score_threshold is None or (document.metadata and document.metadata.get("score", 0) >= score_threshold):
 | |
|                 filter_documents.append(document)
 | |
| 
 | |
|         if not filter_documents:
 | |
|             return []
 | |
|         filter_documents = sorted(
 | |
|             filter_documents, key=lambda x: x.metadata.get("score", 0) if x.metadata else 0, reverse=True
 | |
|         )
 | |
|         return filter_documents[:top_k] if top_k else filter_documents
 | |
| 
 | |
|     def _get_metadata_filter_condition(
 | |
|         self,
 | |
|         dataset_ids: list,
 | |
|         query: str,
 | |
|         tenant_id: str,
 | |
|         user_id: str,
 | |
|         metadata_filtering_mode: str,
 | |
|         metadata_model_config: ModelConfig,
 | |
|         metadata_filtering_conditions: Optional[MetadataFilteringCondition],
 | |
|         inputs: dict,
 | |
|     ) -> tuple[Optional[dict[str, list[str]]], Optional[MetadataCondition]]:
 | |
|         document_query = db.session.query(DatasetDocument).filter(
 | |
|             DatasetDocument.dataset_id.in_(dataset_ids),
 | |
|             DatasetDocument.indexing_status == "completed",
 | |
|             DatasetDocument.enabled == True,
 | |
|             DatasetDocument.archived == False,
 | |
|         )
 | |
|         filters = []  # type: ignore
 | |
|         metadata_condition = None
 | |
|         if metadata_filtering_mode == "disabled":
 | |
|             return None, None
 | |
|         elif metadata_filtering_mode == "automatic":
 | |
|             automatic_metadata_filters = self._automatic_metadata_filter_func(
 | |
|                 dataset_ids, query, tenant_id, user_id, metadata_model_config
 | |
|             )
 | |
|             if automatic_metadata_filters:
 | |
|                 conditions = []
 | |
|                 for sequence, filter in enumerate(automatic_metadata_filters):
 | |
|                     self._process_metadata_filter_func(
 | |
|                         sequence,
 | |
|                         filter.get("condition"),  # type: ignore
 | |
|                         filter.get("metadata_name"),  # type: ignore
 | |
|                         filter.get("value"),
 | |
|                         filters,  # type: ignore
 | |
|                     )
 | |
|                     conditions.append(
 | |
|                         Condition(
 | |
|                             name=filter.get("metadata_name"),  # type: ignore
 | |
|                             comparison_operator=filter.get("condition"),  # type: ignore
 | |
|                             value=filter.get("value"),
 | |
|                         )
 | |
|                     )
 | |
|                 metadata_condition = MetadataCondition(
 | |
|                     logical_operator=metadata_filtering_conditions.logical_operator,  # type: ignore
 | |
|                     conditions=conditions,
 | |
|                 )
 | |
|         elif metadata_filtering_mode == "manual":
 | |
|             if metadata_filtering_conditions:
 | |
|                 metadata_condition = MetadataCondition(**metadata_filtering_conditions.model_dump())
 | |
|                 for sequence, condition in enumerate(metadata_filtering_conditions.conditions):  # type: ignore
 | |
|                     metadata_name = condition.name
 | |
|                     expected_value = condition.value
 | |
|                     if expected_value is not None or condition.comparison_operator in ("empty", "not empty"):
 | |
|                         if isinstance(expected_value, str):
 | |
|                             expected_value = self._replace_metadata_filter_value(expected_value, inputs)
 | |
|                         filters = self._process_metadata_filter_func(
 | |
|                             sequence,
 | |
|                             condition.comparison_operator,
 | |
|                             metadata_name,
 | |
|                             expected_value,
 | |
|                             filters,
 | |
|                         )
 | |
|         else:
 | |
|             raise ValueError("Invalid metadata filtering mode")
 | |
|         if filters:
 | |
|             if metadata_filtering_conditions.logical_operator == "or":  # type: ignore
 | |
|                 document_query = document_query.filter(or_(*filters))
 | |
|             else:
 | |
|                 document_query = document_query.filter(and_(*filters))
 | |
|         documents = document_query.all()
 | |
|         # group by dataset_id
 | |
|         metadata_filter_document_ids = defaultdict(list) if documents else None  # type: ignore
 | |
|         for document in documents:
 | |
|             metadata_filter_document_ids[document.dataset_id].append(document.id)  # type: ignore
 | |
|         return metadata_filter_document_ids, metadata_condition
 | |
| 
 | |
|     def _replace_metadata_filter_value(self, text: str, inputs: dict) -> str:
 | |
|         def replacer(match):
 | |
|             key = match.group(1)
 | |
|             return str(inputs.get(key, f"{{{{{key}}}}}"))
 | |
| 
 | |
|         pattern = re.compile(r"\{\{(\w+)\}\}")
 | |
|         output = pattern.sub(replacer, text)
 | |
|         if isinstance(output, str):
 | |
|             output = re.sub(r"[\r\n\t]+", " ", output).strip()
 | |
|         return output
 | |
| 
 | |
|     def _automatic_metadata_filter_func(
 | |
|         self, dataset_ids: list, query: str, tenant_id: str, user_id: str, metadata_model_config: ModelConfig
 | |
|     ) -> Optional[list[dict[str, Any]]]:
 | |
|         # get all metadata field
 | |
|         metadata_fields = db.session.query(DatasetMetadata).filter(DatasetMetadata.dataset_id.in_(dataset_ids)).all()
 | |
|         all_metadata_fields = [metadata_field.name for metadata_field in metadata_fields]
 | |
|         # get metadata model config
 | |
|         if metadata_model_config is None:
 | |
|             raise ValueError("metadata_model_config is required")
 | |
|         # get metadata model instance
 | |
|         # fetch model config
 | |
|         model_instance, model_config = self._fetch_model_config(tenant_id, metadata_model_config)
 | |
| 
 | |
|         # fetch prompt messages
 | |
|         prompt_messages, stop = self._get_prompt_template(
 | |
|             model_config=model_config,
 | |
|             mode=metadata_model_config.mode,
 | |
|             metadata_fields=all_metadata_fields,
 | |
|             query=query or "",
 | |
|         )
 | |
| 
 | |
|         result_text = ""
 | |
|         try:
 | |
|             # handle invoke result
 | |
|             invoke_result = cast(
 | |
|                 Generator[LLMResult, None, None],
 | |
|                 model_instance.invoke_llm(
 | |
|                     prompt_messages=prompt_messages,
 | |
|                     model_parameters=model_config.parameters,
 | |
|                     stop=stop,
 | |
|                     stream=True,
 | |
|                     user=user_id,
 | |
|                 ),
 | |
|             )
 | |
| 
 | |
|             # handle invoke result
 | |
|             result_text, usage = self._handle_invoke_result(invoke_result=invoke_result)
 | |
| 
 | |
|             result_text_json = parse_and_check_json_markdown(result_text, [])
 | |
|             automatic_metadata_filters = []
 | |
|             if "metadata_map" in result_text_json:
 | |
|                 metadata_map = result_text_json["metadata_map"]
 | |
|                 for item in metadata_map:
 | |
|                     if item.get("metadata_field_name") in all_metadata_fields:
 | |
|                         automatic_metadata_filters.append(
 | |
|                             {
 | |
|                                 "metadata_name": item.get("metadata_field_name"),
 | |
|                                 "value": item.get("metadata_field_value"),
 | |
|                                 "condition": item.get("comparison_operator"),
 | |
|                             }
 | |
|                         )
 | |
|         except Exception as e:
 | |
|             return None
 | |
|         return automatic_metadata_filters
 | |
| 
 | |
|     def _process_metadata_filter_func(
 | |
|         self, sequence: int, condition: str, metadata_name: str, value: Optional[Any], filters: list
 | |
|     ):
 | |
|         key = f"{metadata_name}_{sequence}"
 | |
|         key_value = f"{metadata_name}_{sequence}_value"
 | |
|         match condition:
 | |
|             case "contains":
 | |
|                 filters.append(
 | |
|                     (text(f"documents.doc_metadata ->> :{key} LIKE :{key_value}")).params(
 | |
|                         **{key: metadata_name, key_value: f"%{value}%"}
 | |
|                     )
 | |
|                 )
 | |
|             case "not contains":
 | |
|                 filters.append(
 | |
|                     (text(f"documents.doc_metadata ->> :{key} NOT LIKE :{key_value}")).params(
 | |
|                         **{key: metadata_name, key_value: f"%{value}%"}
 | |
|                     )
 | |
|                 )
 | |
|             case "start with":
 | |
|                 filters.append(
 | |
|                     (text(f"documents.doc_metadata ->> :{key} LIKE :{key_value}")).params(
 | |
|                         **{key: metadata_name, key_value: f"{value}%"}
 | |
|                     )
 | |
|                 )
 | |
| 
 | |
|             case "end with":
 | |
|                 filters.append(
 | |
|                     (text(f"documents.doc_metadata ->> :{key} LIKE :{key_value}")).params(
 | |
|                         **{key: metadata_name, key_value: f"%{value}"}
 | |
|                     )
 | |
|                 )
 | |
|             case "is" | "=":
 | |
|                 if isinstance(value, str):
 | |
|                     filters.append(DatasetDocument.doc_metadata[metadata_name] == f'"{value}"')
 | |
|                 else:
 | |
|                     filters.append(
 | |
|                         sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Integer) == value
 | |
|                     )
 | |
|             case "is not" | "≠":
 | |
|                 if isinstance(value, str):
 | |
|                     filters.append(DatasetDocument.doc_metadata[metadata_name] != f'"{value}"')
 | |
|                 else:
 | |
|                     filters.append(
 | |
|                         sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Integer) != value
 | |
|                     )
 | |
|             case "empty":
 | |
|                 filters.append(DatasetDocument.doc_metadata[metadata_name].is_(None))
 | |
|             case "not empty":
 | |
|                 filters.append(DatasetDocument.doc_metadata[metadata_name].isnot(None))
 | |
|             case "before" | "<":
 | |
|                 filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Integer) < value)
 | |
|             case "after" | ">":
 | |
|                 filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Integer) > value)
 | |
|             case "≤" | "<=":
 | |
|                 filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Integer) <= value)
 | |
|             case "≥" | ">=":
 | |
|                 filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Integer) >= value)
 | |
|             case _:
 | |
|                 pass
 | |
|         return filters
 | |
| 
 | |
|     def _fetch_model_config(
 | |
|         self, tenant_id: str, model: ModelConfig
 | |
|     ) -> tuple[ModelInstance, ModelConfigWithCredentialsEntity]:
 | |
|         """
 | |
|         Fetch model config
 | |
|         """
 | |
|         if model is None:
 | |
|             raise ValueError("single_retrieval_config is required")
 | |
|         model_name = model.name
 | |
|         provider_name = model.provider
 | |
| 
 | |
|         model_manager = ModelManager()
 | |
|         model_instance = model_manager.get_model_instance(
 | |
|             tenant_id=tenant_id, model_type=ModelType.LLM, provider=provider_name, model=model_name
 | |
|         )
 | |
| 
 | |
|         provider_model_bundle = model_instance.provider_model_bundle
 | |
|         model_type_instance = model_instance.model_type_instance
 | |
|         model_type_instance = cast(LargeLanguageModel, model_type_instance)
 | |
| 
 | |
|         model_credentials = model_instance.credentials
 | |
| 
 | |
|         # check model
 | |
|         provider_model = provider_model_bundle.configuration.get_provider_model(
 | |
|             model=model_name, model_type=ModelType.LLM
 | |
|         )
 | |
| 
 | |
|         if provider_model is None:
 | |
|             raise ValueError(f"Model {model_name} not exist.")
 | |
| 
 | |
|         if provider_model.status == ModelStatus.NO_CONFIGURE:
 | |
|             raise ValueError(f"Model {model_name} credentials is not initialized.")
 | |
|         elif provider_model.status == ModelStatus.NO_PERMISSION:
 | |
|             raise ValueError(f"Dify Hosted OpenAI {model_name} currently not support.")
 | |
|         elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
 | |
|             raise ValueError(f"Model provider {provider_name} quota exceeded.")
 | |
| 
 | |
|         # model config
 | |
|         completion_params = model.completion_params
 | |
|         stop = []
 | |
|         if "stop" in completion_params:
 | |
|             stop = completion_params["stop"]
 | |
|             del completion_params["stop"]
 | |
| 
 | |
|         # get model mode
 | |
|         model_mode = model.mode
 | |
|         if not model_mode:
 | |
|             raise ValueError("LLM mode is required.")
 | |
| 
 | |
|         model_schema = model_type_instance.get_model_schema(model_name, model_credentials)
 | |
| 
 | |
|         if not model_schema:
 | |
|             raise ValueError(f"Model {model_name} not exist.")
 | |
| 
 | |
|         return model_instance, ModelConfigWithCredentialsEntity(
 | |
|             provider=provider_name,
 | |
|             model=model_name,
 | |
|             model_schema=model_schema,
 | |
|             mode=model_mode,
 | |
|             provider_model_bundle=provider_model_bundle,
 | |
|             credentials=model_credentials,
 | |
|             parameters=completion_params,
 | |
|             stop=stop,
 | |
|         )
 | |
| 
 | |
|     def _get_prompt_template(
 | |
|         self, model_config: ModelConfigWithCredentialsEntity, mode: str, metadata_fields: list, query: str
 | |
|     ):
 | |
|         model_mode = ModelMode.value_of(mode)
 | |
|         input_text = query
 | |
| 
 | |
|         prompt_template: Union[CompletionModelPromptTemplate, list[ChatModelMessage]]
 | |
|         if model_mode == ModelMode.CHAT:
 | |
|             prompt_template = []
 | |
|             system_prompt_messages = ChatModelMessage(role=PromptMessageRole.SYSTEM, text=METADATA_FILTER_SYSTEM_PROMPT)
 | |
|             prompt_template.append(system_prompt_messages)
 | |
|             user_prompt_message_1 = ChatModelMessage(role=PromptMessageRole.USER, text=METADATA_FILTER_USER_PROMPT_1)
 | |
|             prompt_template.append(user_prompt_message_1)
 | |
|             assistant_prompt_message_1 = ChatModelMessage(
 | |
|                 role=PromptMessageRole.ASSISTANT, text=METADATA_FILTER_ASSISTANT_PROMPT_1
 | |
|             )
 | |
|             prompt_template.append(assistant_prompt_message_1)
 | |
|             user_prompt_message_2 = ChatModelMessage(role=PromptMessageRole.USER, text=METADATA_FILTER_USER_PROMPT_2)
 | |
|             prompt_template.append(user_prompt_message_2)
 | |
|             assistant_prompt_message_2 = ChatModelMessage(
 | |
|                 role=PromptMessageRole.ASSISTANT, text=METADATA_FILTER_ASSISTANT_PROMPT_2
 | |
|             )
 | |
|             prompt_template.append(assistant_prompt_message_2)
 | |
|             user_prompt_message_3 = ChatModelMessage(
 | |
|                 role=PromptMessageRole.USER,
 | |
|                 text=METADATA_FILTER_USER_PROMPT_3.format(
 | |
|                     input_text=input_text,
 | |
|                     metadata_fields=json.dumps(metadata_fields, ensure_ascii=False),
 | |
|                 ),
 | |
|             )
 | |
|             prompt_template.append(user_prompt_message_3)
 | |
|         elif model_mode == ModelMode.COMPLETION:
 | |
|             prompt_template = CompletionModelPromptTemplate(
 | |
|                 text=METADATA_FILTER_COMPLETION_PROMPT.format(
 | |
|                     input_text=input_text,
 | |
|                     metadata_fields=json.dumps(metadata_fields, ensure_ascii=False),
 | |
|                 )
 | |
|             )
 | |
| 
 | |
|         else:
 | |
|             raise ValueError(f"Model mode {model_mode} not support.")
 | |
| 
 | |
|         prompt_transform = AdvancedPromptTransform()
 | |
|         prompt_messages = prompt_transform.get_prompt(
 | |
|             prompt_template=prompt_template,
 | |
|             inputs={},
 | |
|             query=query or "",
 | |
|             files=[],
 | |
|             context=None,
 | |
|             memory_config=None,
 | |
|             memory=None,
 | |
|             model_config=model_config,
 | |
|         )
 | |
|         stop = model_config.stop
 | |
| 
 | |
|         return prompt_messages, stop
 | |
| 
 | |
|     def _handle_invoke_result(self, invoke_result: Generator) -> tuple[str, LLMUsage]:
 | |
|         """
 | |
|         Handle invoke result
 | |
|         :param invoke_result: invoke result
 | |
|         :return:
 | |
|         """
 | |
|         model = None
 | |
|         prompt_messages: list[PromptMessage] = []
 | |
|         full_text = ""
 | |
|         usage = None
 | |
|         for result in invoke_result:
 | |
|             text = result.delta.message.content
 | |
|             full_text += text
 | |
| 
 | |
|             if not model:
 | |
|                 model = result.model
 | |
| 
 | |
|             if not prompt_messages:
 | |
|                 prompt_messages = result.prompt_messages
 | |
| 
 | |
|             if not usage and result.delta.usage:
 | |
|                 usage = result.delta.usage
 | |
| 
 | |
|         if not usage:
 | |
|             usage = LLMUsage.empty_usage()
 | |
| 
 | |
|         return full_text, usage
 | 
