mirror of
				https://github.com/langgenius/dify.git
				synced 2025-11-03 20:33:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			878 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			878 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import concurrent.futures
 | 
						|
import datetime
 | 
						|
import json
 | 
						|
import logging
 | 
						|
import re
 | 
						|
import threading
 | 
						|
import time
 | 
						|
import uuid
 | 
						|
from typing import Optional, cast
 | 
						|
 | 
						|
from flask import Flask, current_app
 | 
						|
from flask_login import current_user
 | 
						|
from sqlalchemy.orm.exc import ObjectDeletedError
 | 
						|
 | 
						|
from core.errors.error import ProviderTokenNotInitError
 | 
						|
from core.llm_generator.llm_generator import LLMGenerator
 | 
						|
from core.model_manager import ModelInstance, ModelManager
 | 
						|
from core.model_runtime.entities.model_entities import ModelType, PriceType
 | 
						|
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
 | 
						|
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
 | 
						|
from core.rag.datasource.keyword.keyword_factory import Keyword
 | 
						|
from core.rag.docstore.dataset_docstore import DatasetDocumentStore
 | 
						|
from core.rag.extractor.entity.extract_setting import ExtractSetting
 | 
						|
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
 | 
						|
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
 | 
						|
from core.rag.models.document import Document
 | 
						|
from core.rag.splitter.fixed_text_splitter import (
 | 
						|
    EnhanceRecursiveCharacterTextSplitter,
 | 
						|
    FixedRecursiveCharacterTextSplitter,
 | 
						|
)
 | 
						|
from core.rag.splitter.text_splitter import TextSplitter
 | 
						|
from extensions.ext_database import db
 | 
						|
from extensions.ext_redis import redis_client
 | 
						|
from extensions.ext_storage import storage
 | 
						|
from libs import helper
 | 
						|
from models.dataset import Dataset, DatasetProcessRule, DocumentSegment
 | 
						|
from models.dataset import Document as DatasetDocument
 | 
						|
from models.model import UploadFile
 | 
						|
from services.feature_service import FeatureService
 | 
						|
 | 
						|
 | 
						|
class IndexingRunner:
 | 
						|
 | 
						|
    def __init__(self):
 | 
						|
        self.storage = storage
 | 
						|
        self.model_manager = ModelManager()
 | 
						|
 | 
						|
    def run(self, dataset_documents: list[DatasetDocument]):
 | 
						|
        """Run the indexing process."""
 | 
						|
        for dataset_document in dataset_documents:
 | 
						|
            try:
 | 
						|
                # get dataset
 | 
						|
                dataset = Dataset.query.filter_by(
 | 
						|
                    id=dataset_document.dataset_id
 | 
						|
                ).first()
 | 
						|
 | 
						|
                if not dataset:
 | 
						|
                    raise ValueError("no dataset found")
 | 
						|
 | 
						|
                # get the process rule
 | 
						|
                processing_rule = db.session.query(DatasetProcessRule). \
 | 
						|
                    filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
 | 
						|
                    first()
 | 
						|
                index_type = dataset_document.doc_form
 | 
						|
                index_processor = IndexProcessorFactory(index_type).init_index_processor()
 | 
						|
                # extract
 | 
						|
                text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
 | 
						|
 | 
						|
                # transform
 | 
						|
                documents = self._transform(index_processor, dataset, text_docs, dataset_document.doc_language,
 | 
						|
                                            processing_rule.to_dict())
 | 
						|
                # save segment
 | 
						|
                self._load_segments(dataset, dataset_document, documents)
 | 
						|
 | 
						|
                # load
 | 
						|
                self._load(
 | 
						|
                    index_processor=index_processor,
 | 
						|
                    dataset=dataset,
 | 
						|
                    dataset_document=dataset_document,
 | 
						|
                    documents=documents
 | 
						|
                )
 | 
						|
            except DocumentIsPausedException:
 | 
						|
                raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
 | 
						|
            except ProviderTokenNotInitError as e:
 | 
						|
                dataset_document.indexing_status = 'error'
 | 
						|
                dataset_document.error = str(e.description)
 | 
						|
                dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
                db.session.commit()
 | 
						|
            except ObjectDeletedError:
 | 
						|
                logging.warning('Document deleted, document id: {}'.format(dataset_document.id))
 | 
						|
            except Exception as e:
 | 
						|
                logging.exception("consume document failed")
 | 
						|
                dataset_document.indexing_status = 'error'
 | 
						|
                dataset_document.error = str(e)
 | 
						|
                dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
                db.session.commit()
 | 
						|
 | 
						|
    def run_in_splitting_status(self, dataset_document: DatasetDocument):
 | 
						|
        """Run the indexing process when the index_status is splitting."""
 | 
						|
        try:
 | 
						|
            # get dataset
 | 
						|
            dataset = Dataset.query.filter_by(
 | 
						|
                id=dataset_document.dataset_id
 | 
						|
            ).first()
 | 
						|
 | 
						|
            if not dataset:
 | 
						|
                raise ValueError("no dataset found")
 | 
						|
 | 
						|
            # get exist document_segment list and delete
 | 
						|
            document_segments = DocumentSegment.query.filter_by(
 | 
						|
                dataset_id=dataset.id,
 | 
						|
                document_id=dataset_document.id
 | 
						|
            ).all()
 | 
						|
 | 
						|
            for document_segment in document_segments:
 | 
						|
                db.session.delete(document_segment)
 | 
						|
            db.session.commit()
 | 
						|
            # get the process rule
 | 
						|
            processing_rule = db.session.query(DatasetProcessRule). \
 | 
						|
                filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
 | 
						|
                first()
 | 
						|
 | 
						|
            index_type = dataset_document.doc_form
 | 
						|
            index_processor = IndexProcessorFactory(index_type).init_index_processor()
 | 
						|
            # extract
 | 
						|
            text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
 | 
						|
 | 
						|
            # transform
 | 
						|
            documents = self._transform(index_processor, dataset, text_docs, dataset_document.doc_language,
 | 
						|
                                        processing_rule.to_dict())
 | 
						|
            # save segment
 | 
						|
            self._load_segments(dataset, dataset_document, documents)
 | 
						|
 | 
						|
            # load
 | 
						|
            self._load(
 | 
						|
                index_processor=index_processor,
 | 
						|
                dataset=dataset,
 | 
						|
                dataset_document=dataset_document,
 | 
						|
                documents=documents
 | 
						|
            )
 | 
						|
        except DocumentIsPausedException:
 | 
						|
            raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
 | 
						|
        except ProviderTokenNotInitError as e:
 | 
						|
            dataset_document.indexing_status = 'error'
 | 
						|
            dataset_document.error = str(e.description)
 | 
						|
            dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
            db.session.commit()
 | 
						|
        except Exception as e:
 | 
						|
            logging.exception("consume document failed")
 | 
						|
            dataset_document.indexing_status = 'error'
 | 
						|
            dataset_document.error = str(e)
 | 
						|
            dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
            db.session.commit()
 | 
						|
 | 
						|
    def run_in_indexing_status(self, dataset_document: DatasetDocument):
 | 
						|
        """Run the indexing process when the index_status is indexing."""
 | 
						|
        try:
 | 
						|
            # get dataset
 | 
						|
            dataset = Dataset.query.filter_by(
 | 
						|
                id=dataset_document.dataset_id
 | 
						|
            ).first()
 | 
						|
 | 
						|
            if not dataset:
 | 
						|
                raise ValueError("no dataset found")
 | 
						|
 | 
						|
            # get exist document_segment list and delete
 | 
						|
            document_segments = DocumentSegment.query.filter_by(
 | 
						|
                dataset_id=dataset.id,
 | 
						|
                document_id=dataset_document.id
 | 
						|
            ).all()
 | 
						|
 | 
						|
            documents = []
 | 
						|
            if document_segments:
 | 
						|
                for document_segment in document_segments:
 | 
						|
                    # transform segment to node
 | 
						|
                    if document_segment.status != "completed":
 | 
						|
                        document = Document(
 | 
						|
                            page_content=document_segment.content,
 | 
						|
                            metadata={
 | 
						|
                                "doc_id": document_segment.index_node_id,
 | 
						|
                                "doc_hash": document_segment.index_node_hash,
 | 
						|
                                "document_id": document_segment.document_id,
 | 
						|
                                "dataset_id": document_segment.dataset_id,
 | 
						|
                            }
 | 
						|
                        )
 | 
						|
 | 
						|
                        documents.append(document)
 | 
						|
 | 
						|
            # build index
 | 
						|
            # get the process rule
 | 
						|
            processing_rule = db.session.query(DatasetProcessRule). \
 | 
						|
                filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
 | 
						|
                first()
 | 
						|
 | 
						|
            index_type = dataset_document.doc_form
 | 
						|
            index_processor = IndexProcessorFactory(index_type).init_index_processor()
 | 
						|
            self._load(
 | 
						|
                index_processor=index_processor,
 | 
						|
                dataset=dataset,
 | 
						|
                dataset_document=dataset_document,
 | 
						|
                documents=documents
 | 
						|
            )
 | 
						|
        except DocumentIsPausedException:
 | 
						|
            raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
 | 
						|
        except ProviderTokenNotInitError as e:
 | 
						|
            dataset_document.indexing_status = 'error'
 | 
						|
            dataset_document.error = str(e.description)
 | 
						|
            dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
            db.session.commit()
 | 
						|
        except Exception as e:
 | 
						|
            logging.exception("consume document failed")
 | 
						|
            dataset_document.indexing_status = 'error'
 | 
						|
            dataset_document.error = str(e)
 | 
						|
            dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
            db.session.commit()
 | 
						|
 | 
						|
    def indexing_estimate(self, tenant_id: str, extract_settings: list[ExtractSetting], tmp_processing_rule: dict,
 | 
						|
                          doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
 | 
						|
                          indexing_technique: str = 'economy') -> dict:
 | 
						|
        """
 | 
						|
        Estimate the indexing for the document.
 | 
						|
        """
 | 
						|
        # check document limit
 | 
						|
        features = FeatureService.get_features(tenant_id)
 | 
						|
        if features.billing.enabled:
 | 
						|
            count = len(extract_settings)
 | 
						|
            batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
 | 
						|
            if count > batch_upload_limit:
 | 
						|
                raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
 | 
						|
 | 
						|
        embedding_model_instance = None
 | 
						|
        if dataset_id:
 | 
						|
            dataset = Dataset.query.filter_by(
 | 
						|
                id=dataset_id
 | 
						|
            ).first()
 | 
						|
            if not dataset:
 | 
						|
                raise ValueError('Dataset not found.')
 | 
						|
            if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
 | 
						|
                if dataset.embedding_model_provider:
 | 
						|
                    embedding_model_instance = self.model_manager.get_model_instance(
 | 
						|
                        tenant_id=tenant_id,
 | 
						|
                        provider=dataset.embedding_model_provider,
 | 
						|
                        model_type=ModelType.TEXT_EMBEDDING,
 | 
						|
                        model=dataset.embedding_model
 | 
						|
                    )
 | 
						|
                else:
 | 
						|
                    embedding_model_instance = self.model_manager.get_default_model_instance(
 | 
						|
                        tenant_id=tenant_id,
 | 
						|
                        model_type=ModelType.TEXT_EMBEDDING,
 | 
						|
                    )
 | 
						|
        else:
 | 
						|
            if indexing_technique == 'high_quality':
 | 
						|
                embedding_model_instance = self.model_manager.get_default_model_instance(
 | 
						|
                    tenant_id=tenant_id,
 | 
						|
                    model_type=ModelType.TEXT_EMBEDDING,
 | 
						|
                )
 | 
						|
        tokens = 0
 | 
						|
        preview_texts = []
 | 
						|
        total_segments = 0
 | 
						|
        total_price = 0
 | 
						|
        currency = 'USD'
 | 
						|
        index_type = doc_form
 | 
						|
        index_processor = IndexProcessorFactory(index_type).init_index_processor()
 | 
						|
        all_text_docs = []
 | 
						|
        for extract_setting in extract_settings:
 | 
						|
            # extract
 | 
						|
            text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"])
 | 
						|
            all_text_docs.extend(text_docs)
 | 
						|
            processing_rule = DatasetProcessRule(
 | 
						|
                mode=tmp_processing_rule["mode"],
 | 
						|
                rules=json.dumps(tmp_processing_rule["rules"])
 | 
						|
            )
 | 
						|
 | 
						|
            # get splitter
 | 
						|
            splitter = self._get_splitter(processing_rule, embedding_model_instance)
 | 
						|
 | 
						|
            # split to documents
 | 
						|
            documents = self._split_to_documents_for_estimate(
 | 
						|
                text_docs=text_docs,
 | 
						|
                splitter=splitter,
 | 
						|
                processing_rule=processing_rule
 | 
						|
            )
 | 
						|
 | 
						|
            total_segments += len(documents)
 | 
						|
            for document in documents:
 | 
						|
                if len(preview_texts) < 5:
 | 
						|
                    preview_texts.append(document.page_content)
 | 
						|
                if indexing_technique == 'high_quality' or embedding_model_instance:
 | 
						|
                    tokens += embedding_model_instance.get_text_embedding_num_tokens(
 | 
						|
                        texts=[self.filter_string(document.page_content)]
 | 
						|
                    )
 | 
						|
 | 
						|
        if doc_form and doc_form == 'qa_model':
 | 
						|
            model_instance = self.model_manager.get_default_model_instance(
 | 
						|
                tenant_id=tenant_id,
 | 
						|
                model_type=ModelType.LLM
 | 
						|
            )
 | 
						|
 | 
						|
            model_type_instance = model_instance.model_type_instance
 | 
						|
            model_type_instance = cast(LargeLanguageModel, model_type_instance)
 | 
						|
 | 
						|
            if len(preview_texts) > 0:
 | 
						|
                # qa model document
 | 
						|
                response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
 | 
						|
                                                             doc_language)
 | 
						|
                document_qa_list = self.format_split_text(response)
 | 
						|
                price_info = model_type_instance.get_price(
 | 
						|
                    model=model_instance.model,
 | 
						|
                    credentials=model_instance.credentials,
 | 
						|
                    price_type=PriceType.INPUT,
 | 
						|
                    tokens=total_segments * 2000,
 | 
						|
                )
 | 
						|
                return {
 | 
						|
                    "total_segments": total_segments * 20,
 | 
						|
                    "tokens": total_segments * 2000,
 | 
						|
                    "total_price": '{:f}'.format(price_info.total_amount),
 | 
						|
                    "currency": price_info.currency,
 | 
						|
                    "qa_preview": document_qa_list,
 | 
						|
                    "preview": preview_texts
 | 
						|
                }
 | 
						|
        if embedding_model_instance:
 | 
						|
            embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_instance.model_type_instance)
 | 
						|
            embedding_price_info = embedding_model_type_instance.get_price(
 | 
						|
                model=embedding_model_instance.model,
 | 
						|
                credentials=embedding_model_instance.credentials,
 | 
						|
                price_type=PriceType.INPUT,
 | 
						|
                tokens=tokens
 | 
						|
            )
 | 
						|
            total_price = '{:f}'.format(embedding_price_info.total_amount)
 | 
						|
            currency = embedding_price_info.currency
 | 
						|
        return {
 | 
						|
            "total_segments": total_segments,
 | 
						|
            "tokens": tokens,
 | 
						|
            "total_price": total_price,
 | 
						|
            "currency": currency,
 | 
						|
            "preview": preview_texts
 | 
						|
        }
 | 
						|
 | 
						|
    def _extract(self, index_processor: BaseIndexProcessor, dataset_document: DatasetDocument, process_rule: dict) \
 | 
						|
            -> list[Document]:
 | 
						|
        # load file
 | 
						|
        if dataset_document.data_source_type not in ["upload_file", "notion_import", "website_crawl"]:
 | 
						|
            return []
 | 
						|
 | 
						|
        data_source_info = dataset_document.data_source_info_dict
 | 
						|
        text_docs = []
 | 
						|
        if dataset_document.data_source_type == 'upload_file':
 | 
						|
            if not data_source_info or 'upload_file_id' not in data_source_info:
 | 
						|
                raise ValueError("no upload file found")
 | 
						|
 | 
						|
            file_detail = db.session.query(UploadFile). \
 | 
						|
                filter(UploadFile.id == data_source_info['upload_file_id']). \
 | 
						|
                one_or_none()
 | 
						|
 | 
						|
            if file_detail:
 | 
						|
                extract_setting = ExtractSetting(
 | 
						|
                    datasource_type="upload_file",
 | 
						|
                    upload_file=file_detail,
 | 
						|
                    document_model=dataset_document.doc_form
 | 
						|
                )
 | 
						|
                text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode'])
 | 
						|
        elif dataset_document.data_source_type == 'notion_import':
 | 
						|
            if (not data_source_info or 'notion_workspace_id' not in data_source_info
 | 
						|
                    or 'notion_page_id' not in data_source_info):
 | 
						|
                raise ValueError("no notion import info found")
 | 
						|
            extract_setting = ExtractSetting(
 | 
						|
                datasource_type="notion_import",
 | 
						|
                notion_info={
 | 
						|
                    "notion_workspace_id": data_source_info['notion_workspace_id'],
 | 
						|
                    "notion_obj_id": data_source_info['notion_page_id'],
 | 
						|
                    "notion_page_type": data_source_info['type'],
 | 
						|
                    "document": dataset_document,
 | 
						|
                    "tenant_id": dataset_document.tenant_id
 | 
						|
                },
 | 
						|
                document_model=dataset_document.doc_form
 | 
						|
            )
 | 
						|
            text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode'])
 | 
						|
        elif dataset_document.data_source_type == 'website_crawl':
 | 
						|
            if (not data_source_info or 'provider' not in data_source_info
 | 
						|
                    or 'url' not in data_source_info or 'job_id' not in data_source_info):
 | 
						|
                raise ValueError("no website import info found")
 | 
						|
            extract_setting = ExtractSetting(
 | 
						|
                datasource_type="website_crawl",
 | 
						|
                website_info={
 | 
						|
                    "provider": data_source_info['provider'],
 | 
						|
                    "job_id": data_source_info['job_id'],
 | 
						|
                    "tenant_id": dataset_document.tenant_id,
 | 
						|
                    "url": data_source_info['url'],
 | 
						|
                    "mode": data_source_info['mode'],
 | 
						|
                    "only_main_content": data_source_info['only_main_content']
 | 
						|
                },
 | 
						|
                document_model=dataset_document.doc_form
 | 
						|
            )
 | 
						|
            text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode'])
 | 
						|
        # update document status to splitting
 | 
						|
        self._update_document_index_status(
 | 
						|
            document_id=dataset_document.id,
 | 
						|
            after_indexing_status="splitting",
 | 
						|
            extra_update_params={
 | 
						|
                DatasetDocument.word_count: sum(len(text_doc.page_content) for text_doc in text_docs),
 | 
						|
                DatasetDocument.parsing_completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
        # replace doc id to document model id
 | 
						|
        text_docs = cast(list[Document], text_docs)
 | 
						|
        for text_doc in text_docs:
 | 
						|
            text_doc.metadata['document_id'] = dataset_document.id
 | 
						|
            text_doc.metadata['dataset_id'] = dataset_document.dataset_id
 | 
						|
 | 
						|
        return text_docs
 | 
						|
 | 
						|
    def filter_string(self, text):
 | 
						|
        text = re.sub(r'<\|', '<', text)
 | 
						|
        text = re.sub(r'\|>', '>', text)
 | 
						|
        text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\xEF\xBF\xBE]', '', text)
 | 
						|
        # Unicode  U+FFFE
 | 
						|
        text = re.sub('\uFFFE', '', text)
 | 
						|
        return text
 | 
						|
 | 
						|
    def _get_splitter(self, processing_rule: DatasetProcessRule,
 | 
						|
                      embedding_model_instance: Optional[ModelInstance]) -> TextSplitter:
 | 
						|
        """
 | 
						|
        Get the NodeParser object according to the processing rule.
 | 
						|
        """
 | 
						|
        if processing_rule.mode == "custom":
 | 
						|
            # The user-defined segmentation rule
 | 
						|
            rules = json.loads(processing_rule.rules)
 | 
						|
            segmentation = rules["segmentation"]
 | 
						|
            max_segmentation_tokens_length = int(current_app.config['INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH'])
 | 
						|
            if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > max_segmentation_tokens_length:
 | 
						|
                raise ValueError(f"Custom segment length should be between 50 and {max_segmentation_tokens_length}.")
 | 
						|
 | 
						|
            separator = segmentation["separator"]
 | 
						|
            if separator:
 | 
						|
                separator = separator.replace('\\n', '\n')
 | 
						|
 | 
						|
            if segmentation.get('chunk_overlap'):
 | 
						|
                chunk_overlap = segmentation['chunk_overlap']
 | 
						|
            else:
 | 
						|
                chunk_overlap = 0
 | 
						|
 | 
						|
            character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
 | 
						|
                chunk_size=segmentation["max_tokens"],
 | 
						|
                chunk_overlap=chunk_overlap,
 | 
						|
                fixed_separator=separator,
 | 
						|
                separators=["\n\n", "。", ". ", " ", ""],
 | 
						|
                embedding_model_instance=embedding_model_instance
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            # Automatic segmentation
 | 
						|
            character_splitter = EnhanceRecursiveCharacterTextSplitter.from_encoder(
 | 
						|
                chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
 | 
						|
                chunk_overlap=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['chunk_overlap'],
 | 
						|
                separators=["\n\n", "。", ". ", " ", ""],
 | 
						|
                embedding_model_instance=embedding_model_instance
 | 
						|
            )
 | 
						|
 | 
						|
        return character_splitter
 | 
						|
 | 
						|
    def _step_split(self, text_docs: list[Document], splitter: TextSplitter,
 | 
						|
                    dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
 | 
						|
            -> list[Document]:
 | 
						|
        """
 | 
						|
        Split the text documents into documents and save them to the document segment.
 | 
						|
        """
 | 
						|
        documents = self._split_to_documents(
 | 
						|
            text_docs=text_docs,
 | 
						|
            splitter=splitter,
 | 
						|
            processing_rule=processing_rule,
 | 
						|
            tenant_id=dataset.tenant_id,
 | 
						|
            document_form=dataset_document.doc_form,
 | 
						|
            document_language=dataset_document.doc_language
 | 
						|
        )
 | 
						|
 | 
						|
        # save node to document segment
 | 
						|
        doc_store = DatasetDocumentStore(
 | 
						|
            dataset=dataset,
 | 
						|
            user_id=dataset_document.created_by,
 | 
						|
            document_id=dataset_document.id
 | 
						|
        )
 | 
						|
 | 
						|
        # add document segments
 | 
						|
        doc_store.add_documents(documents)
 | 
						|
 | 
						|
        # update document status to indexing
 | 
						|
        cur_time = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
        self._update_document_index_status(
 | 
						|
            document_id=dataset_document.id,
 | 
						|
            after_indexing_status="indexing",
 | 
						|
            extra_update_params={
 | 
						|
                DatasetDocument.cleaning_completed_at: cur_time,
 | 
						|
                DatasetDocument.splitting_completed_at: cur_time,
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
        # update segment status to indexing
 | 
						|
        self._update_segments_by_document(
 | 
						|
            dataset_document_id=dataset_document.id,
 | 
						|
            update_params={
 | 
						|
                DocumentSegment.status: "indexing",
 | 
						|
                DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
        return documents
 | 
						|
 | 
						|
    def _split_to_documents(self, text_docs: list[Document], splitter: TextSplitter,
 | 
						|
                            processing_rule: DatasetProcessRule, tenant_id: str,
 | 
						|
                            document_form: str, document_language: str) -> list[Document]:
 | 
						|
        """
 | 
						|
        Split the text documents into nodes.
 | 
						|
        """
 | 
						|
        all_documents = []
 | 
						|
        all_qa_documents = []
 | 
						|
        for text_doc in text_docs:
 | 
						|
            # document clean
 | 
						|
            document_text = self._document_clean(text_doc.page_content, processing_rule)
 | 
						|
            text_doc.page_content = document_text
 | 
						|
 | 
						|
            # parse document to nodes
 | 
						|
            documents = splitter.split_documents([text_doc])
 | 
						|
            split_documents = []
 | 
						|
            for document_node in documents:
 | 
						|
 | 
						|
                if document_node.page_content.strip():
 | 
						|
                    doc_id = str(uuid.uuid4())
 | 
						|
                    hash = helper.generate_text_hash(document_node.page_content)
 | 
						|
                    document_node.metadata['doc_id'] = doc_id
 | 
						|
                    document_node.metadata['doc_hash'] = hash
 | 
						|
                    # delete Spliter character
 | 
						|
                    page_content = document_node.page_content
 | 
						|
                    if page_content.startswith(".") or page_content.startswith("。"):
 | 
						|
                        page_content = page_content[1:]
 | 
						|
                    else:
 | 
						|
                        page_content = page_content
 | 
						|
                    document_node.page_content = page_content
 | 
						|
 | 
						|
                    if document_node.page_content:
 | 
						|
                        split_documents.append(document_node)
 | 
						|
            all_documents.extend(split_documents)
 | 
						|
        # processing qa document
 | 
						|
        if document_form == 'qa_model':
 | 
						|
            for i in range(0, len(all_documents), 10):
 | 
						|
                threads = []
 | 
						|
                sub_documents = all_documents[i:i + 10]
 | 
						|
                for doc in sub_documents:
 | 
						|
                    document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
 | 
						|
                        'flask_app': current_app._get_current_object(),
 | 
						|
                        'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents,
 | 
						|
                        'document_language': document_language})
 | 
						|
                    threads.append(document_format_thread)
 | 
						|
                    document_format_thread.start()
 | 
						|
                for thread in threads:
 | 
						|
                    thread.join()
 | 
						|
            return all_qa_documents
 | 
						|
        return all_documents
 | 
						|
 | 
						|
    def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
 | 
						|
        format_documents = []
 | 
						|
        if document_node.page_content is None or not document_node.page_content.strip():
 | 
						|
            return
 | 
						|
        with flask_app.app_context():
 | 
						|
            try:
 | 
						|
                # qa model document
 | 
						|
                response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
 | 
						|
                document_qa_list = self.format_split_text(response)
 | 
						|
                qa_documents = []
 | 
						|
                for result in document_qa_list:
 | 
						|
                    qa_document = Document(page_content=result['question'], metadata=document_node.metadata.model_copy())
 | 
						|
                    doc_id = str(uuid.uuid4())
 | 
						|
                    hash = helper.generate_text_hash(result['question'])
 | 
						|
                    qa_document.metadata['answer'] = result['answer']
 | 
						|
                    qa_document.metadata['doc_id'] = doc_id
 | 
						|
                    qa_document.metadata['doc_hash'] = hash
 | 
						|
                    qa_documents.append(qa_document)
 | 
						|
                format_documents.extend(qa_documents)
 | 
						|
            except Exception as e:
 | 
						|
                logging.exception(e)
 | 
						|
 | 
						|
            all_qa_documents.extend(format_documents)
 | 
						|
 | 
						|
    def _split_to_documents_for_estimate(self, text_docs: list[Document], splitter: TextSplitter,
 | 
						|
                                         processing_rule: DatasetProcessRule) -> list[Document]:
 | 
						|
        """
 | 
						|
        Split the text documents into nodes.
 | 
						|
        """
 | 
						|
        all_documents = []
 | 
						|
        for text_doc in text_docs:
 | 
						|
            # document clean
 | 
						|
            document_text = self._document_clean(text_doc.page_content, processing_rule)
 | 
						|
            text_doc.page_content = document_text
 | 
						|
 | 
						|
            # parse document to nodes
 | 
						|
            documents = splitter.split_documents([text_doc])
 | 
						|
 | 
						|
            split_documents = []
 | 
						|
            for document in documents:
 | 
						|
                if document.page_content is None or not document.page_content.strip():
 | 
						|
                    continue
 | 
						|
                doc_id = str(uuid.uuid4())
 | 
						|
                hash = helper.generate_text_hash(document.page_content)
 | 
						|
 | 
						|
                document.metadata['doc_id'] = doc_id
 | 
						|
                document.metadata['doc_hash'] = hash
 | 
						|
 | 
						|
                split_documents.append(document)
 | 
						|
 | 
						|
            all_documents.extend(split_documents)
 | 
						|
 | 
						|
        return all_documents
 | 
						|
 | 
						|
    def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
 | 
						|
        """
 | 
						|
        Clean the document text according to the processing rules.
 | 
						|
        """
 | 
						|
        if processing_rule.mode == "automatic":
 | 
						|
            rules = DatasetProcessRule.AUTOMATIC_RULES
 | 
						|
        else:
 | 
						|
            rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
 | 
						|
 | 
						|
        if 'pre_processing_rules' in rules:
 | 
						|
            pre_processing_rules = rules["pre_processing_rules"]
 | 
						|
            for pre_processing_rule in pre_processing_rules:
 | 
						|
                if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
 | 
						|
                    # Remove extra spaces
 | 
						|
                    pattern = r'\n{3,}'
 | 
						|
                    text = re.sub(pattern, '\n\n', text)
 | 
						|
                    pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
 | 
						|
                    text = re.sub(pattern, ' ', text)
 | 
						|
                elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
 | 
						|
                    # Remove email
 | 
						|
                    pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
 | 
						|
                    text = re.sub(pattern, '', text)
 | 
						|
 | 
						|
                    # Remove URL
 | 
						|
                    pattern = r'https?://[^\s]+'
 | 
						|
                    text = re.sub(pattern, '', text)
 | 
						|
 | 
						|
        return text
 | 
						|
 | 
						|
    def format_split_text(self, text):
 | 
						|
        regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)"
 | 
						|
        matches = re.findall(regex, text, re.UNICODE)
 | 
						|
 | 
						|
        return [
 | 
						|
            {
 | 
						|
                "question": q,
 | 
						|
                "answer": re.sub(r"\n\s*", "\n", a.strip())
 | 
						|
            }
 | 
						|
            for q, a in matches if q and a
 | 
						|
        ]
 | 
						|
 | 
						|
    def _load(self, index_processor: BaseIndexProcessor, dataset: Dataset,
 | 
						|
              dataset_document: DatasetDocument, documents: list[Document]) -> None:
 | 
						|
        """
 | 
						|
        insert index and update document/segment status to completed
 | 
						|
        """
 | 
						|
 | 
						|
        embedding_model_instance = None
 | 
						|
        if dataset.indexing_technique == 'high_quality':
 | 
						|
            embedding_model_instance = self.model_manager.get_model_instance(
 | 
						|
                tenant_id=dataset.tenant_id,
 | 
						|
                provider=dataset.embedding_model_provider,
 | 
						|
                model_type=ModelType.TEXT_EMBEDDING,
 | 
						|
                model=dataset.embedding_model
 | 
						|
            )
 | 
						|
 | 
						|
        # chunk nodes by chunk size
 | 
						|
        indexing_start_at = time.perf_counter()
 | 
						|
        tokens = 0
 | 
						|
        chunk_size = 10
 | 
						|
 | 
						|
        # create keyword index
 | 
						|
        create_keyword_thread = threading.Thread(target=self._process_keyword_index,
 | 
						|
                                                 args=(current_app._get_current_object(),
 | 
						|
                                                       dataset.id, dataset_document.id, documents))
 | 
						|
        create_keyword_thread.start()
 | 
						|
        if dataset.indexing_technique == 'high_quality':
 | 
						|
            with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
 | 
						|
                futures = []
 | 
						|
                for i in range(0, len(documents), chunk_size):
 | 
						|
                    chunk_documents = documents[i:i + chunk_size]
 | 
						|
                    futures.append(executor.submit(self._process_chunk, current_app._get_current_object(), index_processor,
 | 
						|
                                                   chunk_documents, dataset,
 | 
						|
                                                   dataset_document, embedding_model_instance))
 | 
						|
 | 
						|
                for future in futures:
 | 
						|
                    tokens += future.result()
 | 
						|
 | 
						|
        create_keyword_thread.join()
 | 
						|
        indexing_end_at = time.perf_counter()
 | 
						|
 | 
						|
        # update document status to completed
 | 
						|
        self._update_document_index_status(
 | 
						|
            document_id=dataset_document.id,
 | 
						|
            after_indexing_status="completed",
 | 
						|
            extra_update_params={
 | 
						|
                DatasetDocument.tokens: tokens,
 | 
						|
                DatasetDocument.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
 | 
						|
                DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
    def _process_keyword_index(self, flask_app, dataset_id, document_id, documents):
 | 
						|
        with flask_app.app_context():
 | 
						|
            dataset = Dataset.query.filter_by(id=dataset_id).first()
 | 
						|
            if not dataset:
 | 
						|
                raise ValueError("no dataset found")
 | 
						|
            keyword = Keyword(dataset)
 | 
						|
            keyword.create(documents)
 | 
						|
            if dataset.indexing_technique != 'high_quality':
 | 
						|
                document_ids = [document.metadata['doc_id'] for document in documents]
 | 
						|
                db.session.query(DocumentSegment).filter(
 | 
						|
                    DocumentSegment.document_id == document_id,
 | 
						|
                    DocumentSegment.index_node_id.in_(document_ids),
 | 
						|
                    DocumentSegment.status == "indexing"
 | 
						|
                ).update({
 | 
						|
                    DocumentSegment.status: "completed",
 | 
						|
                    DocumentSegment.enabled: True,
 | 
						|
                    DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
                })
 | 
						|
 | 
						|
                db.session.commit()
 | 
						|
 | 
						|
    def _process_chunk(self, flask_app, index_processor, chunk_documents, dataset, dataset_document,
 | 
						|
                       embedding_model_instance):
 | 
						|
        with flask_app.app_context():
 | 
						|
            # check document is paused
 | 
						|
            self._check_document_paused_status(dataset_document.id)
 | 
						|
 | 
						|
            tokens = 0
 | 
						|
            if embedding_model_instance:
 | 
						|
                tokens += sum(
 | 
						|
                    embedding_model_instance.get_text_embedding_num_tokens(
 | 
						|
                        [document.page_content]
 | 
						|
                    )
 | 
						|
                    for document in chunk_documents
 | 
						|
                )
 | 
						|
 | 
						|
            # load index
 | 
						|
            index_processor.load(dataset, chunk_documents, with_keywords=False)
 | 
						|
 | 
						|
            document_ids = [document.metadata['doc_id'] for document in chunk_documents]
 | 
						|
            db.session.query(DocumentSegment).filter(
 | 
						|
                DocumentSegment.document_id == dataset_document.id,
 | 
						|
                DocumentSegment.index_node_id.in_(document_ids),
 | 
						|
                DocumentSegment.status == "indexing"
 | 
						|
            ).update({
 | 
						|
                DocumentSegment.status: "completed",
 | 
						|
                DocumentSegment.enabled: True,
 | 
						|
                DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
            })
 | 
						|
 | 
						|
            db.session.commit()
 | 
						|
 | 
						|
            return tokens
 | 
						|
 | 
						|
    def _check_document_paused_status(self, document_id: str):
 | 
						|
        indexing_cache_key = 'document_{}_is_paused'.format(document_id)
 | 
						|
        result = redis_client.get(indexing_cache_key)
 | 
						|
        if result:
 | 
						|
            raise DocumentIsPausedException()
 | 
						|
 | 
						|
    def _update_document_index_status(self, document_id: str, after_indexing_status: str,
 | 
						|
                                      extra_update_params: Optional[dict] = None) -> None:
 | 
						|
        """
 | 
						|
        Update the document indexing status.
 | 
						|
        """
 | 
						|
        count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
 | 
						|
        if count > 0:
 | 
						|
            raise DocumentIsPausedException()
 | 
						|
        document = DatasetDocument.query.filter_by(id=document_id).first()
 | 
						|
        if not document:
 | 
						|
            raise DocumentIsDeletedPausedException()
 | 
						|
 | 
						|
        update_params = {
 | 
						|
            DatasetDocument.indexing_status: after_indexing_status
 | 
						|
        }
 | 
						|
 | 
						|
        if extra_update_params:
 | 
						|
            update_params.update(extra_update_params)
 | 
						|
 | 
						|
        DatasetDocument.query.filter_by(id=document_id).update(update_params)
 | 
						|
        db.session.commit()
 | 
						|
 | 
						|
    def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
 | 
						|
        """
 | 
						|
        Update the document segment by document id.
 | 
						|
        """
 | 
						|
        DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
 | 
						|
        db.session.commit()
 | 
						|
 | 
						|
    def batch_add_segments(self, segments: list[DocumentSegment], dataset: Dataset):
 | 
						|
        """
 | 
						|
        Batch add segments index processing
 | 
						|
        """
 | 
						|
        documents = []
 | 
						|
        for segment in segments:
 | 
						|
            document = Document(
 | 
						|
                page_content=segment.content,
 | 
						|
                metadata={
 | 
						|
                    "doc_id": segment.index_node_id,
 | 
						|
                    "doc_hash": segment.index_node_hash,
 | 
						|
                    "document_id": segment.document_id,
 | 
						|
                    "dataset_id": segment.dataset_id,
 | 
						|
                }
 | 
						|
            )
 | 
						|
            documents.append(document)
 | 
						|
        # save vector index
 | 
						|
        index_type = dataset.doc_form
 | 
						|
        index_processor = IndexProcessorFactory(index_type).init_index_processor()
 | 
						|
        index_processor.load(dataset, documents)
 | 
						|
 | 
						|
    def _transform(self, index_processor: BaseIndexProcessor, dataset: Dataset,
 | 
						|
                   text_docs: list[Document], doc_language: str, process_rule: dict) -> list[Document]:
 | 
						|
        # get embedding model instance
 | 
						|
        embedding_model_instance = None
 | 
						|
        if dataset.indexing_technique == 'high_quality':
 | 
						|
            if dataset.embedding_model_provider:
 | 
						|
                embedding_model_instance = self.model_manager.get_model_instance(
 | 
						|
                    tenant_id=dataset.tenant_id,
 | 
						|
                    provider=dataset.embedding_model_provider,
 | 
						|
                    model_type=ModelType.TEXT_EMBEDDING,
 | 
						|
                    model=dataset.embedding_model
 | 
						|
                )
 | 
						|
            else:
 | 
						|
                embedding_model_instance = self.model_manager.get_default_model_instance(
 | 
						|
                    tenant_id=dataset.tenant_id,
 | 
						|
                    model_type=ModelType.TEXT_EMBEDDING,
 | 
						|
                )
 | 
						|
 | 
						|
        documents = index_processor.transform(text_docs, embedding_model_instance=embedding_model_instance,
 | 
						|
                                              process_rule=process_rule, tenant_id=dataset.tenant_id,
 | 
						|
                                              doc_language=doc_language)
 | 
						|
 | 
						|
        return documents
 | 
						|
 | 
						|
    def _load_segments(self, dataset, dataset_document, documents):
 | 
						|
        # save node to document segment
 | 
						|
        doc_store = DatasetDocumentStore(
 | 
						|
            dataset=dataset,
 | 
						|
            user_id=dataset_document.created_by,
 | 
						|
            document_id=dataset_document.id
 | 
						|
        )
 | 
						|
 | 
						|
        # add document segments
 | 
						|
        doc_store.add_documents(documents)
 | 
						|
 | 
						|
        # update document status to indexing
 | 
						|
        cur_time = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
        self._update_document_index_status(
 | 
						|
            document_id=dataset_document.id,
 | 
						|
            after_indexing_status="indexing",
 | 
						|
            extra_update_params={
 | 
						|
                DatasetDocument.cleaning_completed_at: cur_time,
 | 
						|
                DatasetDocument.splitting_completed_at: cur_time,
 | 
						|
            }
 | 
						|
        )
 | 
						|
 | 
						|
        # update segment status to indexing
 | 
						|
        self._update_segments_by_document(
 | 
						|
            dataset_document_id=dataset_document.id,
 | 
						|
            update_params={
 | 
						|
                DocumentSegment.status: "indexing",
 | 
						|
                DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
            }
 | 
						|
        )
 | 
						|
        pass
 | 
						|
 | 
						|
 | 
						|
class DocumentIsPausedException(Exception):
 | 
						|
    pass
 | 
						|
 | 
						|
 | 
						|
class DocumentIsDeletedPausedException(Exception):
 | 
						|
    pass
 |