dify/api/schedule/workflow_schedule_task.py
Maries a1b735a4c0
feat: trigger billing (#28335)
Signed-off-by: lyzno1 <yuanyouhuilyz@gmail.com>
Co-authored-by: lyzno1 <yuanyouhuilyz@gmail.com>
Co-authored-by: lyzno1 <92089059+lyzno1@users.noreply.github.com>
Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
2025-11-20 10:15:23 +08:00

117 lines
3.9 KiB
Python

import logging
from celery import group, shared_task
from sqlalchemy import and_, select
from sqlalchemy.orm import Session, sessionmaker
from configs import dify_config
from extensions.ext_database import db
from libs.datetime_utils import naive_utc_now
from libs.schedule_utils import calculate_next_run_at
from models.trigger import AppTrigger, AppTriggerStatus, AppTriggerType, WorkflowSchedulePlan
from tasks.workflow_schedule_tasks import run_schedule_trigger
logger = logging.getLogger(__name__)
@shared_task(queue="schedule_poller")
def poll_workflow_schedules() -> None:
"""
Poll and process due workflow schedules.
Streaming flow:
1. Fetch due schedules in batches
2. Process each batch until all due schedules are handled
3. Optional: Limit total dispatches per tick as a circuit breaker
"""
session_factory = sessionmaker(bind=db.engine, expire_on_commit=False)
with session_factory() as session:
total_dispatched = 0
# Process in batches until we've handled all due schedules or hit the limit
while True:
due_schedules = _fetch_due_schedules(session)
if not due_schedules:
break
dispatched_count = _process_schedules(session, due_schedules)
total_dispatched += dispatched_count
logger.debug("Batch processed: %d dispatched", dispatched_count)
# Circuit breaker: check if we've hit the per-tick limit (if enabled)
if (
dify_config.WORKFLOW_SCHEDULE_MAX_DISPATCH_PER_TICK > 0
and total_dispatched >= dify_config.WORKFLOW_SCHEDULE_MAX_DISPATCH_PER_TICK
):
logger.warning(
"Circuit breaker activated: reached dispatch limit (%d), will continue next tick",
dify_config.WORKFLOW_SCHEDULE_MAX_DISPATCH_PER_TICK,
)
break
if total_dispatched > 0:
logger.info("Total processed: %d dispatched", total_dispatched)
def _fetch_due_schedules(session: Session) -> list[WorkflowSchedulePlan]:
"""
Fetch a batch of due schedules, sorted by most overdue first.
Returns up to WORKFLOW_SCHEDULE_POLLER_BATCH_SIZE schedules per call.
Used in a loop to progressively process all due schedules.
"""
now = naive_utc_now()
due_schedules = session.scalars(
(
select(WorkflowSchedulePlan)
.join(
AppTrigger,
and_(
AppTrigger.app_id == WorkflowSchedulePlan.app_id,
AppTrigger.node_id == WorkflowSchedulePlan.node_id,
AppTrigger.trigger_type == AppTriggerType.TRIGGER_SCHEDULE,
),
)
.where(
WorkflowSchedulePlan.next_run_at <= now,
WorkflowSchedulePlan.next_run_at.isnot(None),
AppTrigger.status == AppTriggerStatus.ENABLED,
)
)
.order_by(WorkflowSchedulePlan.next_run_at.asc())
.with_for_update(skip_locked=True)
.limit(dify_config.WORKFLOW_SCHEDULE_POLLER_BATCH_SIZE)
)
return list(due_schedules)
def _process_schedules(session: Session, schedules: list[WorkflowSchedulePlan]) -> int:
"""Process schedules: check quota, update next run time and dispatch to Celery in parallel."""
if not schedules:
return 0
tasks_to_dispatch: list[str] = []
for schedule in schedules:
next_run_at = calculate_next_run_at(
schedule.cron_expression,
schedule.timezone,
)
schedule.next_run_at = next_run_at
tasks_to_dispatch.append(schedule.id)
if tasks_to_dispatch:
job = group(run_schedule_trigger.s(schedule_id) for schedule_id in tasks_to_dispatch)
job.apply_async()
logger.debug("Dispatched %d tasks in parallel", len(tasks_to_dispatch))
session.commit()
return len(tasks_to_dispatch)