mirror of
				https://github.com/langgenius/dify.git
				synced 2025-11-04 04:43:09 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			231 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			231 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import os
 | 
						|
from collections.abc import Generator
 | 
						|
 | 
						|
import pytest
 | 
						|
 | 
						|
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
 | 
						|
from core.model_runtime.entities.message_entities import (
 | 
						|
    AssistantPromptMessage,
 | 
						|
    PromptMessageTool,
 | 
						|
    SystemPromptMessage,
 | 
						|
    TextPromptMessageContent,
 | 
						|
    UserPromptMessage,
 | 
						|
)
 | 
						|
from core.model_runtime.entities.model_entities import AIModelEntity
 | 
						|
from core.model_runtime.errors.validate import CredentialsValidateFailedError
 | 
						|
from core.model_runtime.model_providers.chatglm.llm.llm import ChatGLMLargeLanguageModel
 | 
						|
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
 | 
						|
 | 
						|
 | 
						|
def test_predefined_models():
 | 
						|
    model = ChatGLMLargeLanguageModel()
 | 
						|
    model_schemas = model.predefined_models()
 | 
						|
    assert len(model_schemas) >= 1
 | 
						|
    assert isinstance(model_schemas[0], AIModelEntity)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
 | 
						|
def test_validate_credentials_for_chat_model(setup_openai_mock):
 | 
						|
    model = ChatGLMLargeLanguageModel()
 | 
						|
 | 
						|
    with pytest.raises(CredentialsValidateFailedError):
 | 
						|
        model.validate_credentials(model="chatglm2-6b", credentials={"api_base": "invalid_key"})
 | 
						|
 | 
						|
    model.validate_credentials(model="chatglm2-6b", credentials={"api_base": os.environ.get("CHATGLM_API_BASE")})
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
 | 
						|
def test_invoke_model(setup_openai_mock):
 | 
						|
    model = ChatGLMLargeLanguageModel()
 | 
						|
 | 
						|
    response = model.invoke(
 | 
						|
        model="chatglm2-6b",
 | 
						|
        credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
 | 
						|
        prompt_messages=[
 | 
						|
            SystemPromptMessage(
 | 
						|
                content="You are a helpful AI assistant.",
 | 
						|
            ),
 | 
						|
            UserPromptMessage(content="Hello World!"),
 | 
						|
        ],
 | 
						|
        model_parameters={
 | 
						|
            "temperature": 0.7,
 | 
						|
            "top_p": 1.0,
 | 
						|
        },
 | 
						|
        stop=["you"],
 | 
						|
        user="abc-123",
 | 
						|
        stream=False,
 | 
						|
    )
 | 
						|
 | 
						|
    assert isinstance(response, LLMResult)
 | 
						|
    assert len(response.message.content) > 0
 | 
						|
    assert response.usage.total_tokens > 0
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
 | 
						|
def test_invoke_stream_model(setup_openai_mock):
 | 
						|
    model = ChatGLMLargeLanguageModel()
 | 
						|
 | 
						|
    response = model.invoke(
 | 
						|
        model="chatglm2-6b",
 | 
						|
        credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
 | 
						|
        prompt_messages=[
 | 
						|
            SystemPromptMessage(
 | 
						|
                content="You are a helpful AI assistant.",
 | 
						|
            ),
 | 
						|
            UserPromptMessage(content="Hello World!"),
 | 
						|
        ],
 | 
						|
        model_parameters={
 | 
						|
            "temperature": 0.7,
 | 
						|
            "top_p": 1.0,
 | 
						|
        },
 | 
						|
        stop=["you"],
 | 
						|
        stream=True,
 | 
						|
        user="abc-123",
 | 
						|
    )
 | 
						|
 | 
						|
    assert isinstance(response, Generator)
 | 
						|
    for chunk in response:
 | 
						|
        assert isinstance(chunk, LLMResultChunk)
 | 
						|
        assert isinstance(chunk.delta, LLMResultChunkDelta)
 | 
						|
        assert isinstance(chunk.delta.message, AssistantPromptMessage)
 | 
						|
        assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
 | 
						|
def test_invoke_stream_model_with_functions(setup_openai_mock):
 | 
						|
    model = ChatGLMLargeLanguageModel()
 | 
						|
 | 
						|
    response = model.invoke(
 | 
						|
        model="chatglm3-6b",
 | 
						|
        credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
 | 
						|
        prompt_messages=[
 | 
						|
            SystemPromptMessage(
 | 
						|
                content="你是一个天气机器人,你不知道今天的天气怎么样,你需要通过调用一个函数来获取天气信息。"
 | 
						|
            ),
 | 
						|
            UserPromptMessage(content="波士顿天气如何?"),
 | 
						|
        ],
 | 
						|
        model_parameters={
 | 
						|
            "temperature": 0,
 | 
						|
            "top_p": 1.0,
 | 
						|
        },
 | 
						|
        stop=["you"],
 | 
						|
        user="abc-123",
 | 
						|
        stream=True,
 | 
						|
        tools=[
 | 
						|
            PromptMessageTool(
 | 
						|
                name="get_current_weather",
 | 
						|
                description="Get the current weather in a given location",
 | 
						|
                parameters={
 | 
						|
                    "type": "object",
 | 
						|
                    "properties": {
 | 
						|
                        "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
 | 
						|
                        "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
 | 
						|
                    },
 | 
						|
                    "required": ["location"],
 | 
						|
                },
 | 
						|
            )
 | 
						|
        ],
 | 
						|
    )
 | 
						|
 | 
						|
    assert isinstance(response, Generator)
 | 
						|
 | 
						|
    call: LLMResultChunk = None
 | 
						|
    chunks = []
 | 
						|
 | 
						|
    for chunk in response:
 | 
						|
        chunks.append(chunk)
 | 
						|
        assert isinstance(chunk, LLMResultChunk)
 | 
						|
        assert isinstance(chunk.delta, LLMResultChunkDelta)
 | 
						|
        assert isinstance(chunk.delta.message, AssistantPromptMessage)
 | 
						|
        assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
 | 
						|
 | 
						|
        if chunk.delta.message.tool_calls and len(chunk.delta.message.tool_calls) > 0:
 | 
						|
            call = chunk
 | 
						|
            break
 | 
						|
 | 
						|
    assert call is not None
 | 
						|
    assert call.delta.message.tool_calls[0].function.name == "get_current_weather"
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
 | 
						|
def test_invoke_model_with_functions(setup_openai_mock):
 | 
						|
    model = ChatGLMLargeLanguageModel()
 | 
						|
 | 
						|
    response = model.invoke(
 | 
						|
        model="chatglm3-6b",
 | 
						|
        credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
 | 
						|
        prompt_messages=[UserPromptMessage(content="What is the weather like in San Francisco?")],
 | 
						|
        model_parameters={
 | 
						|
            "temperature": 0.7,
 | 
						|
            "top_p": 1.0,
 | 
						|
        },
 | 
						|
        stop=["you"],
 | 
						|
        user="abc-123",
 | 
						|
        stream=False,
 | 
						|
        tools=[
 | 
						|
            PromptMessageTool(
 | 
						|
                name="get_current_weather",
 | 
						|
                description="Get the current weather in a given location",
 | 
						|
                parameters={
 | 
						|
                    "type": "object",
 | 
						|
                    "properties": {
 | 
						|
                        "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
 | 
						|
                        "unit": {"type": "string", "enum": ["c", "f"]},
 | 
						|
                    },
 | 
						|
                    "required": ["location"],
 | 
						|
                },
 | 
						|
            )
 | 
						|
        ],
 | 
						|
    )
 | 
						|
 | 
						|
    assert isinstance(response, LLMResult)
 | 
						|
    assert len(response.message.content) > 0
 | 
						|
    assert response.usage.total_tokens > 0
 | 
						|
    assert response.message.tool_calls[0].function.name == "get_current_weather"
 | 
						|
 | 
						|
 | 
						|
def test_get_num_tokens():
 | 
						|
    model = ChatGLMLargeLanguageModel()
 | 
						|
 | 
						|
    num_tokens = model.get_num_tokens(
 | 
						|
        model="chatglm2-6b",
 | 
						|
        credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
 | 
						|
        prompt_messages=[
 | 
						|
            SystemPromptMessage(
 | 
						|
                content="You are a helpful AI assistant.",
 | 
						|
            ),
 | 
						|
            UserPromptMessage(content="Hello World!"),
 | 
						|
        ],
 | 
						|
        tools=[
 | 
						|
            PromptMessageTool(
 | 
						|
                name="get_current_weather",
 | 
						|
                description="Get the current weather in a given location",
 | 
						|
                parameters={
 | 
						|
                    "type": "object",
 | 
						|
                    "properties": {
 | 
						|
                        "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
 | 
						|
                        "unit": {"type": "string", "enum": ["c", "f"]},
 | 
						|
                    },
 | 
						|
                    "required": ["location"],
 | 
						|
                },
 | 
						|
            )
 | 
						|
        ],
 | 
						|
    )
 | 
						|
 | 
						|
    assert isinstance(num_tokens, int)
 | 
						|
    assert num_tokens == 77
 | 
						|
 | 
						|
    num_tokens = model.get_num_tokens(
 | 
						|
        model="chatglm2-6b",
 | 
						|
        credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
 | 
						|
        prompt_messages=[
 | 
						|
            SystemPromptMessage(
 | 
						|
                content="You are a helpful AI assistant.",
 | 
						|
            ),
 | 
						|
            UserPromptMessage(content="Hello World!"),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
 | 
						|
    assert isinstance(num_tokens, int)
 | 
						|
    assert num_tokens == 21
 |