mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-31 10:53:02 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			578 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			578 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import datetime
 | |
| import json
 | |
| import logging
 | |
| import re
 | |
| import time
 | |
| import uuid
 | |
| from typing import Optional, List, cast
 | |
| 
 | |
| from flask import current_app
 | |
| from flask_login import current_user
 | |
| from langchain.embeddings import OpenAIEmbeddings
 | |
| from langchain.schema import Document
 | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
 | |
| 
 | |
| from core.data_loader.file_extractor import FileExtractor
 | |
| from core.data_loader.loader.notion import NotionLoader
 | |
| from core.docstore.dataset_docstore import DatesetDocumentStore
 | |
| from core.embedding.cached_embedding import CacheEmbedding
 | |
| from core.index.index import IndexBuilder
 | |
| from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
 | |
| from core.index.vector_index.vector_index import VectorIndex
 | |
| from core.llm.error import ProviderTokenNotInitError
 | |
| from core.llm.llm_builder import LLMBuilder
 | |
| from core.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
 | |
| from core.llm.token_calculator import TokenCalculator
 | |
| from extensions.ext_database import db
 | |
| from extensions.ext_redis import redis_client
 | |
| from extensions.ext_storage import storage
 | |
| from libs import helper
 | |
| from models.dataset import Document as DatasetDocument
 | |
| from models.dataset import Dataset, DocumentSegment, DatasetProcessRule
 | |
| from models.model import UploadFile
 | |
| from models.source import DataSourceBinding
 | |
| 
 | |
| 
 | |
| class IndexingRunner:
 | |
| 
 | |
|     def __init__(self, embedding_model_name: str = "text-embedding-ada-002"):
 | |
|         self.storage = storage
 | |
|         self.embedding_model_name = embedding_model_name
 | |
| 
 | |
|     def run(self, dataset_documents: List[DatasetDocument]):
 | |
|         """Run the indexing process."""
 | |
|         for dataset_document in dataset_documents:
 | |
|             try:
 | |
|                 # get dataset
 | |
|                 dataset = Dataset.query.filter_by(
 | |
|                     id=dataset_document.dataset_id
 | |
|                 ).first()
 | |
| 
 | |
|                 if not dataset:
 | |
|                     raise ValueError("no dataset found")
 | |
| 
 | |
|                 # load file
 | |
|                 text_docs = self._load_data(dataset_document)
 | |
| 
 | |
|                 # get the process rule
 | |
|                 processing_rule = db.session.query(DatasetProcessRule). \
 | |
|                     filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
 | |
|                     first()
 | |
| 
 | |
|                 # get splitter
 | |
|                 splitter = self._get_splitter(processing_rule)
 | |
| 
 | |
|                 # split to documents
 | |
|                 documents = self._step_split(
 | |
|                     text_docs=text_docs,
 | |
|                     splitter=splitter,
 | |
|                     dataset=dataset,
 | |
|                     dataset_document=dataset_document,
 | |
|                     processing_rule=processing_rule
 | |
|                 )
 | |
| 
 | |
|                 # build index
 | |
|                 self._build_index(
 | |
|                     dataset=dataset,
 | |
|                     dataset_document=dataset_document,
 | |
|                     documents=documents
 | |
|                 )
 | |
|             except DocumentIsPausedException:
 | |
|                 raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
 | |
|             except ProviderTokenNotInitError as e:
 | |
|                 dataset_document.indexing_status = 'error'
 | |
|                 dataset_document.error = str(e.description)
 | |
|                 dataset_document.stopped_at = datetime.datetime.utcnow()
 | |
|                 db.session.commit()
 | |
|             except Exception as e:
 | |
|                 logging.exception("consume document failed")
 | |
|                 dataset_document.indexing_status = 'error'
 | |
|                 dataset_document.error = str(e)
 | |
|                 dataset_document.stopped_at = datetime.datetime.utcnow()
 | |
|                 db.session.commit()
 | |
| 
 | |
|     def run_in_splitting_status(self, dataset_document: DatasetDocument):
 | |
|         """Run the indexing process when the index_status is splitting."""
 | |
|         try:
 | |
|             # get dataset
 | |
|             dataset = Dataset.query.filter_by(
 | |
|                 id=dataset_document.dataset_id
 | |
|             ).first()
 | |
| 
 | |
|             if not dataset:
 | |
|                 raise ValueError("no dataset found")
 | |
| 
 | |
|             # get exist document_segment list and delete
 | |
|             document_segments = DocumentSegment.query.filter_by(
 | |
|                 dataset_id=dataset.id,
 | |
|                 document_id=dataset_document.id
 | |
|             ).all()
 | |
| 
 | |
|             db.session.delete(document_segments)
 | |
|             db.session.commit()
 | |
| 
 | |
|             # load file
 | |
|             text_docs = self._load_data(dataset_document)
 | |
| 
 | |
|             # get the process rule
 | |
|             processing_rule = db.session.query(DatasetProcessRule). \
 | |
|                 filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
 | |
|                 first()
 | |
| 
 | |
|             # get splitter
 | |
|             splitter = self._get_splitter(processing_rule)
 | |
| 
 | |
|             # split to documents
 | |
|             documents = self._step_split(
 | |
|                 text_docs=text_docs,
 | |
|                 splitter=splitter,
 | |
|                 dataset=dataset,
 | |
|                 dataset_document=dataset_document,
 | |
|                 processing_rule=processing_rule
 | |
|             )
 | |
| 
 | |
|             # build index
 | |
|             self._build_index(
 | |
|                 dataset=dataset,
 | |
|                 dataset_document=dataset_document,
 | |
|                 documents=documents
 | |
|             )
 | |
|         except DocumentIsPausedException:
 | |
|             raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
 | |
|         except ProviderTokenNotInitError as e:
 | |
|             dataset_document.indexing_status = 'error'
 | |
|             dataset_document.error = str(e.description)
 | |
|             dataset_document.stopped_at = datetime.datetime.utcnow()
 | |
|             db.session.commit()
 | |
|         except Exception as e:
 | |
|             logging.exception("consume document failed")
 | |
|             dataset_document.indexing_status = 'error'
 | |
|             dataset_document.error = str(e)
 | |
|             dataset_document.stopped_at = datetime.datetime.utcnow()
 | |
|             db.session.commit()
 | |
| 
 | |
|     def run_in_indexing_status(self, dataset_document: DatasetDocument):
 | |
|         """Run the indexing process when the index_status is indexing."""
 | |
|         try:
 | |
|             # get dataset
 | |
|             dataset = Dataset.query.filter_by(
 | |
|                 id=dataset_document.dataset_id
 | |
|             ).first()
 | |
| 
 | |
|             if not dataset:
 | |
|                 raise ValueError("no dataset found")
 | |
| 
 | |
|             # get exist document_segment list and delete
 | |
|             document_segments = DocumentSegment.query.filter_by(
 | |
|                 dataset_id=dataset.id,
 | |
|                 document_id=dataset_document.id
 | |
|             ).all()
 | |
| 
 | |
|             documents = []
 | |
|             if document_segments:
 | |
|                 for document_segment in document_segments:
 | |
|                     # transform segment to node
 | |
|                     if document_segment.status != "completed":
 | |
|                         document = Document(
 | |
|                             page_content=document_segment.content,
 | |
|                             metadata={
 | |
|                                 "doc_id": document_segment.index_node_id,
 | |
|                                 "doc_hash": document_segment.index_node_hash,
 | |
|                                 "document_id": document_segment.document_id,
 | |
|                                 "dataset_id": document_segment.dataset_id,
 | |
|                             }
 | |
|                         )
 | |
| 
 | |
|                         documents.append(document)
 | |
| 
 | |
|             # build index
 | |
|             self._build_index(
 | |
|                 dataset=dataset,
 | |
|                 dataset_document=dataset_document,
 | |
|                 documents=documents
 | |
|             )
 | |
|         except DocumentIsPausedException:
 | |
|             raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
 | |
|         except ProviderTokenNotInitError as e:
 | |
|             dataset_document.indexing_status = 'error'
 | |
|             dataset_document.error = str(e.description)
 | |
|             dataset_document.stopped_at = datetime.datetime.utcnow()
 | |
|             db.session.commit()
 | |
|         except Exception as e:
 | |
|             logging.exception("consume document failed")
 | |
|             dataset_document.indexing_status = 'error'
 | |
|             dataset_document.error = str(e)
 | |
|             dataset_document.stopped_at = datetime.datetime.utcnow()
 | |
|             db.session.commit()
 | |
| 
 | |
|     def file_indexing_estimate(self, file_details: List[UploadFile], tmp_processing_rule: dict) -> dict:
 | |
|         """
 | |
|         Estimate the indexing for the document.
 | |
|         """
 | |
|         tokens = 0
 | |
|         preview_texts = []
 | |
|         total_segments = 0
 | |
|         for file_detail in file_details:
 | |
|             # load data from file
 | |
|             text_docs = FileExtractor.load(file_detail)
 | |
| 
 | |
|             processing_rule = DatasetProcessRule(
 | |
|                 mode=tmp_processing_rule["mode"],
 | |
|                 rules=json.dumps(tmp_processing_rule["rules"])
 | |
|             )
 | |
| 
 | |
|             # get splitter
 | |
|             splitter = self._get_splitter(processing_rule)
 | |
| 
 | |
|             # split to documents
 | |
|             documents = self._split_to_documents(
 | |
|                 text_docs=text_docs,
 | |
|                 splitter=splitter,
 | |
|                 processing_rule=processing_rule
 | |
|             )
 | |
|             total_segments += len(documents)
 | |
|             for document in documents:
 | |
|                 if len(preview_texts) < 5:
 | |
|                     preview_texts.append(document.page_content)
 | |
| 
 | |
|                 tokens += TokenCalculator.get_num_tokens(self.embedding_model_name,
 | |
|                                                          self.filter_string(document.page_content))
 | |
| 
 | |
|         return {
 | |
|             "total_segments": total_segments,
 | |
|             "tokens": tokens,
 | |
|             "total_price": '{:f}'.format(TokenCalculator.get_token_price(self.embedding_model_name, tokens)),
 | |
|             "currency": TokenCalculator.get_currency(self.embedding_model_name),
 | |
|             "preview": preview_texts
 | |
|         }
 | |
| 
 | |
|     def notion_indexing_estimate(self, notion_info_list: list, tmp_processing_rule: dict) -> dict:
 | |
|         """
 | |
|         Estimate the indexing for the document.
 | |
|         """
 | |
|         # load data from notion
 | |
|         tokens = 0
 | |
|         preview_texts = []
 | |
|         total_segments = 0
 | |
|         for notion_info in notion_info_list:
 | |
|             workspace_id = notion_info['workspace_id']
 | |
|             data_source_binding = DataSourceBinding.query.filter(
 | |
|                 db.and_(
 | |
|                     DataSourceBinding.tenant_id == current_user.current_tenant_id,
 | |
|                     DataSourceBinding.provider == 'notion',
 | |
|                     DataSourceBinding.disabled == False,
 | |
|                     DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
 | |
|                 )
 | |
|             ).first()
 | |
|             if not data_source_binding:
 | |
|                 raise ValueError('Data source binding not found.')
 | |
| 
 | |
|             for page in notion_info['pages']:
 | |
|                 loader = NotionLoader(
 | |
|                     notion_access_token=data_source_binding.access_token,
 | |
|                     notion_workspace_id=workspace_id,
 | |
|                     notion_obj_id=page['page_id'],
 | |
|                     notion_page_type=page['type']
 | |
|                 )
 | |
|                 documents = loader.load()
 | |
| 
 | |
|                 processing_rule = DatasetProcessRule(
 | |
|                     mode=tmp_processing_rule["mode"],
 | |
|                     rules=json.dumps(tmp_processing_rule["rules"])
 | |
|                 )
 | |
| 
 | |
|                 # get splitter
 | |
|                 splitter = self._get_splitter(processing_rule)
 | |
| 
 | |
|                 # split to documents
 | |
|                 documents = self._split_to_documents(
 | |
|                     text_docs=documents,
 | |
|                     splitter=splitter,
 | |
|                     processing_rule=processing_rule
 | |
|                 )
 | |
|                 total_segments += len(documents)
 | |
|                 for document in documents:
 | |
|                     if len(preview_texts) < 5:
 | |
|                         preview_texts.append(document.page_content)
 | |
| 
 | |
|                     tokens += TokenCalculator.get_num_tokens(self.embedding_model_name, document.page_content)
 | |
| 
 | |
|         return {
 | |
|             "total_segments": total_segments,
 | |
|             "tokens": tokens,
 | |
|             "total_price": '{:f}'.format(TokenCalculator.get_token_price(self.embedding_model_name, tokens)),
 | |
|             "currency": TokenCalculator.get_currency(self.embedding_model_name),
 | |
|             "preview": preview_texts
 | |
|         }
 | |
| 
 | |
|     def _load_data(self, dataset_document: DatasetDocument) -> List[Document]:
 | |
|         # load file
 | |
|         if dataset_document.data_source_type not in ["upload_file", "notion_import"]:
 | |
|             return []
 | |
| 
 | |
|         data_source_info = dataset_document.data_source_info_dict
 | |
|         text_docs = []
 | |
|         if dataset_document.data_source_type == 'upload_file':
 | |
|             if not data_source_info or 'upload_file_id' not in data_source_info:
 | |
|                 raise ValueError("no upload file found")
 | |
| 
 | |
|             file_detail = db.session.query(UploadFile). \
 | |
|                 filter(UploadFile.id == data_source_info['upload_file_id']). \
 | |
|                 one_or_none()
 | |
| 
 | |
|             text_docs = FileExtractor.load(file_detail)
 | |
|         elif dataset_document.data_source_type == 'notion_import':
 | |
|             loader = NotionLoader.from_document(dataset_document)
 | |
|             text_docs = loader.load()
 | |
| 
 | |
|         # update document status to splitting
 | |
|         self._update_document_index_status(
 | |
|             document_id=dataset_document.id,
 | |
|             after_indexing_status="splitting",
 | |
|             extra_update_params={
 | |
|                 DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]),
 | |
|                 DatasetDocument.parsing_completed_at: datetime.datetime.utcnow()
 | |
|             }
 | |
|         )
 | |
| 
 | |
|         # replace doc id to document model id
 | |
|         text_docs = cast(List[Document], text_docs)
 | |
|         for text_doc in text_docs:
 | |
|             # remove invalid symbol
 | |
|             text_doc.page_content = self.filter_string(text_doc.page_content)
 | |
|             text_doc.metadata['document_id'] = dataset_document.id
 | |
|             text_doc.metadata['dataset_id'] = dataset_document.dataset_id
 | |
| 
 | |
|         return text_docs
 | |
| 
 | |
|     def filter_string(self, text):
 | |
|         text = re.sub(r'<\|', '<', text)
 | |
|         text = re.sub(r'\|>', '>', text)
 | |
|         text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]', '', text)
 | |
|         return text
 | |
| 
 | |
|     def _get_splitter(self, processing_rule: DatasetProcessRule) -> TextSplitter:
 | |
|         """
 | |
|         Get the NodeParser object according to the processing rule.
 | |
|         """
 | |
|         if processing_rule.mode == "custom":
 | |
|             # The user-defined segmentation rule
 | |
|             rules = json.loads(processing_rule.rules)
 | |
|             segmentation = rules["segmentation"]
 | |
|             if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
 | |
|                 raise ValueError("Custom segment length should be between 50 and 1000.")
 | |
| 
 | |
|             separator = segmentation["separator"]
 | |
|             if separator:
 | |
|                 separator = separator.replace('\\n', '\n')
 | |
| 
 | |
|             character_splitter = FixedRecursiveCharacterTextSplitter.from_tiktoken_encoder(
 | |
|                 chunk_size=segmentation["max_tokens"],
 | |
|                 chunk_overlap=0,
 | |
|                 fixed_separator=separator,
 | |
|                 separators=["\n\n", "。", ".", " ", ""]
 | |
|             )
 | |
|         else:
 | |
|             # Automatic segmentation
 | |
|             character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
 | |
|                 chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
 | |
|                 chunk_overlap=0,
 | |
|                 separators=["\n\n", "。", ".", " ", ""]
 | |
|             )
 | |
| 
 | |
|         return character_splitter
 | |
| 
 | |
|     def _step_split(self, text_docs: List[Document], splitter: TextSplitter,
 | |
|                     dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
 | |
|             -> List[Document]:
 | |
|         """
 | |
|         Split the text documents into documents and save them to the document segment.
 | |
|         """
 | |
|         documents = self._split_to_documents(
 | |
|             text_docs=text_docs,
 | |
|             splitter=splitter,
 | |
|             processing_rule=processing_rule
 | |
|         )
 | |
| 
 | |
|         # save node to document segment
 | |
|         doc_store = DatesetDocumentStore(
 | |
|             dataset=dataset,
 | |
|             user_id=dataset_document.created_by,
 | |
|             embedding_model_name=self.embedding_model_name,
 | |
|             document_id=dataset_document.id
 | |
|         )
 | |
| 
 | |
|         # add document segments
 | |
|         doc_store.add_documents(documents)
 | |
| 
 | |
|         # update document status to indexing
 | |
|         cur_time = datetime.datetime.utcnow()
 | |
|         self._update_document_index_status(
 | |
|             document_id=dataset_document.id,
 | |
|             after_indexing_status="indexing",
 | |
|             extra_update_params={
 | |
|                 DatasetDocument.cleaning_completed_at: cur_time,
 | |
|                 DatasetDocument.splitting_completed_at: cur_time,
 | |
|             }
 | |
|         )
 | |
| 
 | |
|         # update segment status to indexing
 | |
|         self._update_segments_by_document(
 | |
|             dataset_document_id=dataset_document.id,
 | |
|             update_params={
 | |
|                 DocumentSegment.status: "indexing",
 | |
|                 DocumentSegment.indexing_at: datetime.datetime.utcnow()
 | |
|             }
 | |
|         )
 | |
| 
 | |
|         return documents
 | |
| 
 | |
|     def _split_to_documents(self, text_docs: List[Document], splitter: TextSplitter,
 | |
|                             processing_rule: DatasetProcessRule) -> List[Document]:
 | |
|         """
 | |
|         Split the text documents into nodes.
 | |
|         """
 | |
|         all_documents = []
 | |
|         for text_doc in text_docs:
 | |
|             # document clean
 | |
|             document_text = self._document_clean(text_doc.page_content, processing_rule)
 | |
|             text_doc.page_content = document_text
 | |
| 
 | |
|             # parse document to nodes
 | |
|             documents = splitter.split_documents([text_doc])
 | |
| 
 | |
|             split_documents = []
 | |
|             for document in documents:
 | |
|                 if document.page_content is None or not document.page_content.strip():
 | |
|                     continue
 | |
| 
 | |
|                 doc_id = str(uuid.uuid4())
 | |
|                 hash = helper.generate_text_hash(document.page_content)
 | |
| 
 | |
|                 document.metadata['doc_id'] = doc_id
 | |
|                 document.metadata['doc_hash'] = hash
 | |
| 
 | |
|                 split_documents.append(document)
 | |
| 
 | |
|             all_documents.extend(split_documents)
 | |
| 
 | |
|         return all_documents
 | |
| 
 | |
|     def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
 | |
|         """
 | |
|         Clean the document text according to the processing rules.
 | |
|         """
 | |
|         if processing_rule.mode == "automatic":
 | |
|             rules = DatasetProcessRule.AUTOMATIC_RULES
 | |
|         else:
 | |
|             rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
 | |
| 
 | |
|         if 'pre_processing_rules' in rules:
 | |
|             pre_processing_rules = rules["pre_processing_rules"]
 | |
|             for pre_processing_rule in pre_processing_rules:
 | |
|                 if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
 | |
|                     # Remove extra spaces
 | |
|                     pattern = r'\n{3,}'
 | |
|                     text = re.sub(pattern, '\n\n', text)
 | |
|                     pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
 | |
|                     text = re.sub(pattern, ' ', text)
 | |
|                 elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
 | |
|                     # Remove email
 | |
|                     pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
 | |
|                     text = re.sub(pattern, '', text)
 | |
| 
 | |
|                     # Remove URL
 | |
|                     pattern = r'https?://[^\s]+'
 | |
|                     text = re.sub(pattern, '', text)
 | |
| 
 | |
|         return text
 | |
| 
 | |
|     def _build_index(self, dataset: Dataset, dataset_document: DatasetDocument, documents: List[Document]) -> None:
 | |
|         """
 | |
|         Build the index for the document.
 | |
|         """
 | |
|         vector_index = IndexBuilder.get_index(dataset, 'high_quality')
 | |
|         keyword_table_index = IndexBuilder.get_index(dataset, 'economy')
 | |
| 
 | |
|         # chunk nodes by chunk size
 | |
|         indexing_start_at = time.perf_counter()
 | |
|         tokens = 0
 | |
|         chunk_size = 100
 | |
|         for i in range(0, len(documents), chunk_size):
 | |
|             # check document is paused
 | |
|             self._check_document_paused_status(dataset_document.id)
 | |
|             chunk_documents = documents[i:i + chunk_size]
 | |
| 
 | |
|             tokens += sum(
 | |
|                 TokenCalculator.get_num_tokens(self.embedding_model_name, document.page_content)
 | |
|                 for document in chunk_documents
 | |
|             )
 | |
| 
 | |
|             # save vector index
 | |
|             if vector_index:
 | |
|                 vector_index.add_texts(chunk_documents)
 | |
| 
 | |
|             # save keyword index
 | |
|             keyword_table_index.add_texts(chunk_documents)
 | |
| 
 | |
|             document_ids = [document.metadata['doc_id'] for document in chunk_documents]
 | |
|             db.session.query(DocumentSegment).filter(
 | |
|                 DocumentSegment.document_id == dataset_document.id,
 | |
|                 DocumentSegment.index_node_id.in_(document_ids),
 | |
|                 DocumentSegment.status == "indexing"
 | |
|             ).update({
 | |
|                 DocumentSegment.status: "completed",
 | |
|                 DocumentSegment.completed_at: datetime.datetime.utcnow()
 | |
|             })
 | |
| 
 | |
|             db.session.commit()
 | |
| 
 | |
|         indexing_end_at = time.perf_counter()
 | |
| 
 | |
|         # update document status to completed
 | |
|         self._update_document_index_status(
 | |
|             document_id=dataset_document.id,
 | |
|             after_indexing_status="completed",
 | |
|             extra_update_params={
 | |
|                 DatasetDocument.tokens: tokens,
 | |
|                 DatasetDocument.completed_at: datetime.datetime.utcnow(),
 | |
|                 DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
 | |
|             }
 | |
|         )
 | |
| 
 | |
|     def _check_document_paused_status(self, document_id: str):
 | |
|         indexing_cache_key = 'document_{}_is_paused'.format(document_id)
 | |
|         result = redis_client.get(indexing_cache_key)
 | |
|         if result:
 | |
|             raise DocumentIsPausedException()
 | |
| 
 | |
|     def _update_document_index_status(self, document_id: str, after_indexing_status: str,
 | |
|                                       extra_update_params: Optional[dict] = None) -> None:
 | |
|         """
 | |
|         Update the document indexing status.
 | |
|         """
 | |
|         count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
 | |
|         if count > 0:
 | |
|             raise DocumentIsPausedException()
 | |
| 
 | |
|         update_params = {
 | |
|             DatasetDocument.indexing_status: after_indexing_status
 | |
|         }
 | |
| 
 | |
|         if extra_update_params:
 | |
|             update_params.update(extra_update_params)
 | |
| 
 | |
|         DatasetDocument.query.filter_by(id=document_id).update(update_params)
 | |
|         db.session.commit()
 | |
| 
 | |
|     def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
 | |
|         """
 | |
|         Update the document segment by document id.
 | |
|         """
 | |
|         DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
 | |
|         db.session.commit()
 | |
| 
 | |
| 
 | |
| class DocumentIsPausedException(Exception):
 | |
|     pass
 | 
