mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-31 02:42:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			107 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			107 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import datetime
 | |
| import logging
 | |
| import time
 | |
| 
 | |
| import click
 | |
| from celery import shared_task
 | |
| from werkzeug.exceptions import NotFound
 | |
| 
 | |
| from core.rag.datasource.vdb.vector_factory import Vector
 | |
| from core.rag.models.document import Document
 | |
| from extensions.ext_database import db
 | |
| from extensions.ext_redis import redis_client
 | |
| from models.dataset import Dataset
 | |
| from models.model import App, AppAnnotationSetting, MessageAnnotation
 | |
| from services.dataset_service import DatasetCollectionBindingService
 | |
| 
 | |
| 
 | |
| @shared_task(queue='dataset')
 | |
| def enable_annotation_reply_task(job_id: str, app_id: str, user_id: str, tenant_id: str, score_threshold: float,
 | |
|                                  embedding_provider_name: str, embedding_model_name: str):
 | |
|     """
 | |
|     Async enable annotation reply task
 | |
|     """
 | |
|     logging.info(click.style('Start add app annotation to index: {}'.format(app_id), fg='green'))
 | |
|     start_at = time.perf_counter()
 | |
|     # get app info
 | |
|     app = db.session.query(App).filter(
 | |
|         App.id == app_id,
 | |
|         App.tenant_id == tenant_id,
 | |
|         App.status == 'normal'
 | |
|     ).first()
 | |
| 
 | |
|     if not app:
 | |
|         raise NotFound("App not found")
 | |
| 
 | |
|     annotations = db.session.query(MessageAnnotation).filter(MessageAnnotation.app_id == app_id).all()
 | |
|     enable_app_annotation_key = 'enable_app_annotation_{}'.format(str(app_id))
 | |
|     enable_app_annotation_job_key = 'enable_app_annotation_job_{}'.format(str(job_id))
 | |
| 
 | |
|     try:
 | |
|         documents = []
 | |
|         dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
 | |
|             embedding_provider_name,
 | |
|             embedding_model_name,
 | |
|             'annotation'
 | |
|         )
 | |
|         annotation_setting = db.session.query(AppAnnotationSetting).filter(
 | |
|             AppAnnotationSetting.app_id == app_id).first()
 | |
|         if annotation_setting:
 | |
|             annotation_setting.score_threshold = score_threshold
 | |
|             annotation_setting.collection_binding_id = dataset_collection_binding.id
 | |
|             annotation_setting.updated_user_id = user_id
 | |
|             annotation_setting.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | |
|             db.session.add(annotation_setting)
 | |
|         else:
 | |
|             new_app_annotation_setting = AppAnnotationSetting(
 | |
|                 app_id=app_id,
 | |
|                 score_threshold=score_threshold,
 | |
|                 collection_binding_id=dataset_collection_binding.id,
 | |
|                 created_user_id=user_id,
 | |
|                 updated_user_id=user_id
 | |
|             )
 | |
|             db.session.add(new_app_annotation_setting)
 | |
| 
 | |
|         dataset = Dataset(
 | |
|             id=app_id,
 | |
|             tenant_id=tenant_id,
 | |
|             indexing_technique='high_quality',
 | |
|             embedding_model_provider=embedding_provider_name,
 | |
|             embedding_model=embedding_model_name,
 | |
|             collection_binding_id=dataset_collection_binding.id
 | |
|         )
 | |
|         if annotations:
 | |
|             for annotation in annotations:
 | |
|                 document = Document(
 | |
|                     page_content=annotation.question,
 | |
|                     metadata={
 | |
|                         "annotation_id": annotation.id,
 | |
|                         "app_id": app_id,
 | |
|                         "doc_id": annotation.id
 | |
|                     }
 | |
|                 )
 | |
|                 documents.append(document)
 | |
| 
 | |
|             vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id'])
 | |
|             try:
 | |
|                 vector.delete_by_metadata_field('app_id', app_id)
 | |
|             except Exception as e:
 | |
|                 logging.info(
 | |
|                     click.style('Delete annotation index error: {}'.format(str(e)),
 | |
|                                 fg='red'))
 | |
|             vector.create(documents)
 | |
|         db.session.commit()
 | |
|         redis_client.setex(enable_app_annotation_job_key, 600, 'completed')
 | |
|         end_at = time.perf_counter()
 | |
|         logging.info(
 | |
|             click.style('App annotations added to index: {} latency: {}'.format(app_id, end_at - start_at),
 | |
|                         fg='green'))
 | |
|     except Exception as e:
 | |
|         logging.exception("Annotation batch created index failed:{}".format(str(e)))
 | |
|         redis_client.setex(enable_app_annotation_job_key, 600, 'error')
 | |
|         enable_app_annotation_error_key = 'enable_app_annotation_error_{}'.format(str(job_id))
 | |
|         redis_client.setex(enable_app_annotation_error_key, 600, str(e))
 | |
|         db.session.rollback()
 | |
|     finally:
 | |
|         redis_client.delete(enable_app_annotation_key)
 | 
