mirror of
				https://github.com/langgenius/dify.git
				synced 2025-11-04 04:43:09 +00:00 
			
		
		
		
	Co-authored-by: crazywoola <427733928@qq.com> Co-authored-by: JzoNg <jzongcode@gmail.com>
		
			
				
	
	
		
			106 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			106 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import logging
 | 
						|
import time
 | 
						|
 | 
						|
import click
 | 
						|
from celery import shared_task
 | 
						|
 | 
						|
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
 | 
						|
from core.rag.models.document import Document
 | 
						|
from extensions.ext_database import db
 | 
						|
from models.dataset import Dataset, DocumentSegment
 | 
						|
from models.dataset import Document as DatasetDocument
 | 
						|
 | 
						|
 | 
						|
@shared_task(queue='dataset')
 | 
						|
def deal_dataset_vector_index_task(dataset_id: str, action: str):
 | 
						|
    """
 | 
						|
    Async deal dataset from index
 | 
						|
    :param dataset_id: dataset_id
 | 
						|
    :param action: action
 | 
						|
    Usage: deal_dataset_vector_index_task.delay(dataset_id, action)
 | 
						|
    """
 | 
						|
    logging.info(click.style('Start deal dataset vector index: {}'.format(dataset_id), fg='green'))
 | 
						|
    start_at = time.perf_counter()
 | 
						|
 | 
						|
    try:
 | 
						|
        dataset = Dataset.query.filter_by(
 | 
						|
            id=dataset_id
 | 
						|
        ).first()
 | 
						|
 | 
						|
        if not dataset:
 | 
						|
            raise Exception('Dataset not found')
 | 
						|
        index_type = dataset.doc_form
 | 
						|
        index_processor = IndexProcessorFactory(index_type).init_index_processor()
 | 
						|
        if action == "remove":
 | 
						|
            index_processor.clean(dataset, None, with_keywords=False)
 | 
						|
        elif action == "add":
 | 
						|
            dataset_documents = db.session.query(DatasetDocument).filter(
 | 
						|
                DatasetDocument.dataset_id == dataset_id,
 | 
						|
                DatasetDocument.indexing_status == 'completed',
 | 
						|
                DatasetDocument.enabled == True,
 | 
						|
                DatasetDocument.archived == False,
 | 
						|
            ).all()
 | 
						|
 | 
						|
            if dataset_documents:
 | 
						|
                documents = []
 | 
						|
                for dataset_document in dataset_documents:
 | 
						|
                    # delete from vector index
 | 
						|
                    segments = db.session.query(DocumentSegment).filter(
 | 
						|
                        DocumentSegment.document_id == dataset_document.id,
 | 
						|
                        DocumentSegment.enabled == True
 | 
						|
                    ) .order_by(DocumentSegment.position.asc()).all()
 | 
						|
                    for segment in segments:
 | 
						|
                        document = Document(
 | 
						|
                            page_content=segment.content,
 | 
						|
                            metadata={
 | 
						|
                                "doc_id": segment.index_node_id,
 | 
						|
                                "doc_hash": segment.index_node_hash,
 | 
						|
                                "document_id": segment.document_id,
 | 
						|
                                "dataset_id": segment.dataset_id,
 | 
						|
                            }
 | 
						|
                        )
 | 
						|
 | 
						|
                        documents.append(document)
 | 
						|
 | 
						|
                # save vector index
 | 
						|
                index_processor.load(dataset, documents, with_keywords=False)
 | 
						|
        elif action == 'update':
 | 
						|
            # clean index
 | 
						|
            index_processor.clean(dataset, None, with_keywords=False)
 | 
						|
            dataset_documents = db.session.query(DatasetDocument).filter(
 | 
						|
                DatasetDocument.dataset_id == dataset_id,
 | 
						|
                DatasetDocument.indexing_status == 'completed',
 | 
						|
                DatasetDocument.enabled == True,
 | 
						|
                DatasetDocument.archived == False,
 | 
						|
            ).all()
 | 
						|
            # add new index
 | 
						|
            if dataset_documents:
 | 
						|
                documents = []
 | 
						|
                for dataset_document in dataset_documents:
 | 
						|
                    # delete from vector index
 | 
						|
                    segments = db.session.query(DocumentSegment).filter(
 | 
						|
                        DocumentSegment.document_id == dataset_document.id,
 | 
						|
                        DocumentSegment.enabled == True
 | 
						|
                    ).order_by(DocumentSegment.position.asc()).all()
 | 
						|
                    for segment in segments:
 | 
						|
                        document = Document(
 | 
						|
                            page_content=segment.content,
 | 
						|
                            metadata={
 | 
						|
                                "doc_id": segment.index_node_id,
 | 
						|
                                "doc_hash": segment.index_node_hash,
 | 
						|
                                "document_id": segment.document_id,
 | 
						|
                                "dataset_id": segment.dataset_id,
 | 
						|
                            }
 | 
						|
                        )
 | 
						|
 | 
						|
                        documents.append(document)
 | 
						|
 | 
						|
                # save vector index
 | 
						|
                index_processor.load(dataset, documents, with_keywords=False)
 | 
						|
 | 
						|
        end_at = time.perf_counter()
 | 
						|
        logging.info(
 | 
						|
            click.style('Deal dataset vector index: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
 | 
						|
    except Exception:
 | 
						|
        logging.exception("Deal dataset vector index failed")
 |