mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-31 02:42:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			119 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			119 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import datetime
 | |
| import logging
 | |
| import time
 | |
| 
 | |
| import click
 | |
| from celery import shared_task  # type: ignore
 | |
| from werkzeug.exceptions import NotFound
 | |
| 
 | |
| from core.rag.index_processor.constant.index_type import IndexType
 | |
| from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
 | |
| from core.rag.models.document import ChildDocument, Document
 | |
| from extensions.ext_database import db
 | |
| from extensions.ext_redis import redis_client
 | |
| from models.dataset import DatasetAutoDisableLog, DocumentSegment
 | |
| from models.dataset import Document as DatasetDocument
 | |
| 
 | |
| 
 | |
| @shared_task(queue="dataset")
 | |
| def add_document_to_index_task(dataset_document_id: str):
 | |
|     """
 | |
|     Async Add document to index
 | |
|     :param dataset_document_id:
 | |
| 
 | |
|     Usage: add_document_to_index_task.delay(dataset_document_id)
 | |
|     """
 | |
|     logging.info(click.style("Start add document to index: {}".format(dataset_document_id), fg="green"))
 | |
|     start_at = time.perf_counter()
 | |
| 
 | |
|     dataset_document = db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document_id).first()
 | |
|     if not dataset_document:
 | |
|         raise NotFound("Document not found")
 | |
| 
 | |
|     if dataset_document.indexing_status != "completed":
 | |
|         return
 | |
| 
 | |
|     indexing_cache_key = "document_{}_indexing".format(dataset_document.id)
 | |
| 
 | |
|     try:
 | |
|         segments = (
 | |
|             db.session.query(DocumentSegment)
 | |
|             .filter(
 | |
|                 DocumentSegment.document_id == dataset_document.id,
 | |
|                 DocumentSegment.enabled == False,
 | |
|                 DocumentSegment.status == "completed",
 | |
|             )
 | |
|             .order_by(DocumentSegment.position.asc())
 | |
|             .all()
 | |
|         )
 | |
| 
 | |
|         documents = []
 | |
|         for segment in segments:
 | |
|             document = Document(
 | |
|                 page_content=segment.content,
 | |
|                 metadata={
 | |
|                     "doc_id": segment.index_node_id,
 | |
|                     "doc_hash": segment.index_node_hash,
 | |
|                     "document_id": segment.document_id,
 | |
|                     "dataset_id": segment.dataset_id,
 | |
|                 },
 | |
|             )
 | |
|             if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
 | |
|                 child_chunks = segment.child_chunks
 | |
|                 if child_chunks:
 | |
|                     child_documents = []
 | |
|                     for child_chunk in child_chunks:
 | |
|                         child_document = ChildDocument(
 | |
|                             page_content=child_chunk.content,
 | |
|                             metadata={
 | |
|                                 "doc_id": child_chunk.index_node_id,
 | |
|                                 "doc_hash": child_chunk.index_node_hash,
 | |
|                                 "document_id": segment.document_id,
 | |
|                                 "dataset_id": segment.dataset_id,
 | |
|                             },
 | |
|                         )
 | |
|                         child_documents.append(child_document)
 | |
|                     document.children = child_documents
 | |
|             documents.append(document)
 | |
| 
 | |
|         dataset = dataset_document.dataset
 | |
| 
 | |
|         if not dataset:
 | |
|             raise Exception("Document has no dataset")
 | |
| 
 | |
|         index_type = dataset.doc_form
 | |
|         index_processor = IndexProcessorFactory(index_type).init_index_processor()
 | |
|         index_processor.load(dataset, documents)
 | |
| 
 | |
|         # delete auto disable log
 | |
|         db.session.query(DatasetAutoDisableLog).filter(
 | |
|             DatasetAutoDisableLog.document_id == dataset_document.id
 | |
|         ).delete()
 | |
| 
 | |
|         # update segment to enable
 | |
|         db.session.query(DocumentSegment).filter(DocumentSegment.document_id == dataset_document.id).update(
 | |
|             {
 | |
|                 DocumentSegment.enabled: True,
 | |
|                 DocumentSegment.disabled_at: None,
 | |
|                 DocumentSegment.disabled_by: None,
 | |
|                 DocumentSegment.updated_at: datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
 | |
|             }
 | |
|         )
 | |
|         db.session.commit()
 | |
| 
 | |
|         end_at = time.perf_counter()
 | |
|         logging.info(
 | |
|             click.style(
 | |
|                 "Document added to index: {} latency: {}".format(dataset_document.id, end_at - start_at), fg="green"
 | |
|             )
 | |
|         )
 | |
|     except Exception as e:
 | |
|         logging.exception("add document to index failed")
 | |
|         dataset_document.enabled = False
 | |
|         dataset_document.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
 | |
|         dataset_document.status = "error"
 | |
|         dataset_document.error = str(e)
 | |
|         db.session.commit()
 | |
|     finally:
 | |
|         redis_client.delete(indexing_cache_key)
 | 
