mirror of
				https://github.com/langgenius/dify.git
				synced 2025-11-04 12:53:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			106 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			106 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import logging
 | 
						|
import time
 | 
						|
 | 
						|
import click
 | 
						|
from celery import shared_task
 | 
						|
 | 
						|
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
 | 
						|
from extensions.ext_database import db
 | 
						|
from extensions.ext_storage import storage
 | 
						|
from models.dataset import (
 | 
						|
    AppDatasetJoin,
 | 
						|
    Dataset,
 | 
						|
    DatasetProcessRule,
 | 
						|
    DatasetQuery,
 | 
						|
    Document,
 | 
						|
    DocumentSegment,
 | 
						|
)
 | 
						|
from models.model import UploadFile
 | 
						|
 | 
						|
 | 
						|
# Add import statement for ValueError
 | 
						|
@shared_task(queue="dataset")
 | 
						|
def clean_dataset_task(
 | 
						|
    dataset_id: str,
 | 
						|
    tenant_id: str,
 | 
						|
    indexing_technique: str,
 | 
						|
    index_struct: str,
 | 
						|
    collection_binding_id: str,
 | 
						|
    doc_form: str,
 | 
						|
):
 | 
						|
    """
 | 
						|
    Clean dataset when dataset deleted.
 | 
						|
    :param dataset_id: dataset id
 | 
						|
    :param tenant_id: tenant id
 | 
						|
    :param indexing_technique: indexing technique
 | 
						|
    :param index_struct: index struct dict
 | 
						|
    :param collection_binding_id: collection binding id
 | 
						|
    :param doc_form: dataset form
 | 
						|
 | 
						|
    Usage: clean_dataset_task.delay(dataset_id, tenant_id, indexing_technique, index_struct)
 | 
						|
    """
 | 
						|
    logging.info(click.style("Start clean dataset when dataset deleted: {}".format(dataset_id), fg="green"))
 | 
						|
    start_at = time.perf_counter()
 | 
						|
 | 
						|
    try:
 | 
						|
        dataset = Dataset(
 | 
						|
            id=dataset_id,
 | 
						|
            tenant_id=tenant_id,
 | 
						|
            indexing_technique=indexing_technique,
 | 
						|
            index_struct=index_struct,
 | 
						|
            collection_binding_id=collection_binding_id,
 | 
						|
        )
 | 
						|
        documents = db.session.query(Document).filter(Document.dataset_id == dataset_id).all()
 | 
						|
        segments = db.session.query(DocumentSegment).filter(DocumentSegment.dataset_id == dataset_id).all()
 | 
						|
 | 
						|
        if documents is None or len(documents) == 0:
 | 
						|
            logging.info(click.style("No documents found for dataset: {}".format(dataset_id), fg="green"))
 | 
						|
        else:
 | 
						|
            logging.info(click.style("Cleaning documents for dataset: {}".format(dataset_id), fg="green"))
 | 
						|
            # Specify the index type before initializing the index processor
 | 
						|
            if doc_form is None:
 | 
						|
                raise ValueError("Index type must be specified.")
 | 
						|
            index_processor = IndexProcessorFactory(doc_form).init_index_processor()
 | 
						|
            index_processor.clean(dataset, None)
 | 
						|
 | 
						|
            for document in documents:
 | 
						|
                db.session.delete(document)
 | 
						|
 | 
						|
            for segment in segments:
 | 
						|
                db.session.delete(segment)
 | 
						|
 | 
						|
        db.session.query(DatasetProcessRule).filter(DatasetProcessRule.dataset_id == dataset_id).delete()
 | 
						|
        db.session.query(DatasetQuery).filter(DatasetQuery.dataset_id == dataset_id).delete()
 | 
						|
        db.session.query(AppDatasetJoin).filter(AppDatasetJoin.dataset_id == dataset_id).delete()
 | 
						|
 | 
						|
        # delete files
 | 
						|
        if documents:
 | 
						|
            for document in documents:
 | 
						|
                try:
 | 
						|
                    if document.data_source_type == "upload_file":
 | 
						|
                        if document.data_source_info:
 | 
						|
                            data_source_info = document.data_source_info_dict
 | 
						|
                            if data_source_info and "upload_file_id" in data_source_info:
 | 
						|
                                file_id = data_source_info["upload_file_id"]
 | 
						|
                                file = (
 | 
						|
                                    db.session.query(UploadFile)
 | 
						|
                                    .filter(UploadFile.tenant_id == document.tenant_id, UploadFile.id == file_id)
 | 
						|
                                    .first()
 | 
						|
                                )
 | 
						|
                                if not file:
 | 
						|
                                    continue
 | 
						|
                                storage.delete(file.key)
 | 
						|
                                db.session.delete(file)
 | 
						|
                except Exception:
 | 
						|
                    continue
 | 
						|
 | 
						|
        db.session.commit()
 | 
						|
        end_at = time.perf_counter()
 | 
						|
        logging.info(
 | 
						|
            click.style(
 | 
						|
                "Cleaned dataset when dataset deleted: {} latency: {}".format(dataset_id, end_at - start_at), fg="green"
 | 
						|
            )
 | 
						|
        )
 | 
						|
    except Exception:
 | 
						|
        logging.exception("Cleaned dataset when dataset deleted failed")
 |