mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-30 18:33:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			171 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			171 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| import re
 | |
| from typing import Union
 | |
| 
 | |
| import pytest
 | |
| from _pytest.monkeypatch import MonkeyPatch
 | |
| from requests import Response
 | |
| from requests.exceptions import ConnectionError
 | |
| from requests.sessions import Session
 | |
| from xinference_client.client.restful.restful_client import (
 | |
|     Client,
 | |
|     RESTfulChatModelHandle,
 | |
|     RESTfulEmbeddingModelHandle,
 | |
|     RESTfulGenerateModelHandle,
 | |
|     RESTfulRerankModelHandle,
 | |
| )
 | |
| from xinference_client.types import Embedding, EmbeddingData, EmbeddingUsage
 | |
| 
 | |
| 
 | |
| class MockXinferenceClass:
 | |
|     def get_chat_model(self: Client, model_uid: str) -> Union[RESTfulGenerateModelHandle, RESTfulChatModelHandle]:
 | |
|         if not re.match(r"https?:\/\/[^\s\/$.?#].[^\s]*$", self.base_url):
 | |
|             raise RuntimeError("404 Not Found")
 | |
| 
 | |
|         if "generate" == model_uid:
 | |
|             return RESTfulGenerateModelHandle(model_uid, base_url=self.base_url, auth_headers={})
 | |
|         if "chat" == model_uid:
 | |
|             return RESTfulChatModelHandle(model_uid, base_url=self.base_url, auth_headers={})
 | |
|         if "embedding" == model_uid:
 | |
|             return RESTfulEmbeddingModelHandle(model_uid, base_url=self.base_url, auth_headers={})
 | |
|         if "rerank" == model_uid:
 | |
|             return RESTfulRerankModelHandle(model_uid, base_url=self.base_url, auth_headers={})
 | |
|         raise RuntimeError("404 Not Found")
 | |
| 
 | |
|     def get(self: Session, url: str, **kwargs):
 | |
|         response = Response()
 | |
|         if "v1/models/" in url:
 | |
|             # get model uid
 | |
|             model_uid = url.split("/")[-1] or ""
 | |
|             if not re.match(
 | |
|                 r"[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}", model_uid
 | |
|             ) and model_uid not in {"generate", "chat", "embedding", "rerank"}:
 | |
|                 response.status_code = 404
 | |
|                 response._content = b"{}"
 | |
|                 return response
 | |
| 
 | |
|             # check if url is valid
 | |
|             if not re.match(r"^(https?):\/\/[^\s\/$.?#].[^\s]*$", url):
 | |
|                 response.status_code = 404
 | |
|                 response._content = b"{}"
 | |
|                 return response
 | |
| 
 | |
|             if model_uid in {"generate", "chat"}:
 | |
|                 response.status_code = 200
 | |
|                 response._content = b"""{
 | |
|                     "model_type": "LLM",
 | |
|                     "address": "127.0.0.1:43877",
 | |
|                     "accelerators": [
 | |
|                         "0",
 | |
|                         "1"
 | |
|                     ],
 | |
|                     "model_name": "chatglm3-6b",
 | |
|                     "model_lang": [
 | |
|                         "en"
 | |
|                     ],
 | |
|                     "model_ability": [
 | |
|                         "generate",
 | |
|                         "chat"
 | |
|                     ],
 | |
|                     "model_description": "latest chatglm3",
 | |
|                     "model_format": "pytorch",
 | |
|                     "model_size_in_billions": 7,
 | |
|                     "quantization": "none",
 | |
|                     "model_hub": "huggingface",
 | |
|                     "revision": null,
 | |
|                     "context_length": 2048,
 | |
|                     "replica": 1
 | |
|                 }"""
 | |
|                 return response
 | |
| 
 | |
|             elif model_uid == "embedding":
 | |
|                 response.status_code = 200
 | |
|                 response._content = b"""{
 | |
|                     "model_type": "embedding",
 | |
|                     "address": "127.0.0.1:43877",
 | |
|                     "accelerators": [
 | |
|                         "0",
 | |
|                         "1"
 | |
|                     ],
 | |
|                     "model_name": "bge",
 | |
|                     "model_lang": [
 | |
|                         "en"
 | |
|                     ],
 | |
|                     "revision": null,
 | |
|                     "max_tokens": 512
 | |
|                 }"""
 | |
|                 return response
 | |
| 
 | |
|         elif "v1/cluster/auth" in url:
 | |
|             response.status_code = 200
 | |
|             response._content = b"""{
 | |
|                 "auth": true
 | |
|             }"""
 | |
|             return response
 | |
| 
 | |
|     def _check_cluster_authenticated(self):
 | |
|         self._cluster_authed = True
 | |
| 
 | |
|     def rerank(
 | |
|         self: RESTfulRerankModelHandle, documents: list[str], query: str, top_n: int, return_documents: bool
 | |
|     ) -> dict:
 | |
|         # check if self._model_uid is a valid uuid
 | |
|         if (
 | |
|             not re.match(r"[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}", self._model_uid)
 | |
|             and self._model_uid != "rerank"
 | |
|         ):
 | |
|             raise RuntimeError("404 Not Found")
 | |
| 
 | |
|         if not re.match(r"^(https?):\/\/[^\s\/$.?#].[^\s]*$", self._base_url):
 | |
|             raise RuntimeError("404 Not Found")
 | |
| 
 | |
|         if top_n is None:
 | |
|             top_n = 1
 | |
| 
 | |
|         return {
 | |
|             "results": [
 | |
|                 {"index": i, "document": doc, "relevance_score": 0.9} for i, doc in enumerate(documents[:top_n])
 | |
|             ]
 | |
|         }
 | |
| 
 | |
|     def create_embedding(self: RESTfulGenerateModelHandle, input: Union[str, list[str]], **kwargs) -> dict:
 | |
|         # check if self._model_uid is a valid uuid
 | |
|         if (
 | |
|             not re.match(r"[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}", self._model_uid)
 | |
|             and self._model_uid != "embedding"
 | |
|         ):
 | |
|             raise RuntimeError("404 Not Found")
 | |
| 
 | |
|         if isinstance(input, str):
 | |
|             input = [input]
 | |
|         ipt_len = len(input)
 | |
| 
 | |
|         embedding = Embedding(
 | |
|             object="list",
 | |
|             model=self._model_uid,
 | |
|             data=[
 | |
|                 EmbeddingData(index=i, object="embedding", embedding=[1919.810 for _ in range(768)])
 | |
|                 for i in range(ipt_len)
 | |
|             ],
 | |
|             usage=EmbeddingUsage(prompt_tokens=ipt_len, total_tokens=ipt_len),
 | |
|         )
 | |
| 
 | |
|         return embedding
 | |
| 
 | |
| 
 | |
| MOCK = os.getenv("MOCK_SWITCH", "false").lower() == "true"
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def setup_xinference_mock(request, monkeypatch: MonkeyPatch):
 | |
|     if MOCK:
 | |
|         monkeypatch.setattr(Client, "get_model", MockXinferenceClass.get_chat_model)
 | |
|         monkeypatch.setattr(Client, "_check_cluster_authenticated", MockXinferenceClass._check_cluster_authenticated)
 | |
|         monkeypatch.setattr(Session, "get", MockXinferenceClass.get)
 | |
|         monkeypatch.setattr(RESTfulEmbeddingModelHandle, "create_embedding", MockXinferenceClass.create_embedding)
 | |
|         monkeypatch.setattr(RESTfulRerankModelHandle, "rerank", MockXinferenceClass.rerank)
 | |
|     yield
 | |
| 
 | |
|     if MOCK:
 | |
|         monkeypatch.undo()
 | 
