mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-30 18:33:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			231 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			231 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| from collections.abc import Generator
 | |
| 
 | |
| import pytest
 | |
| 
 | |
| from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
 | |
| from core.model_runtime.entities.message_entities import (
 | |
|     AssistantPromptMessage,
 | |
|     PromptMessageTool,
 | |
|     SystemPromptMessage,
 | |
|     TextPromptMessageContent,
 | |
|     UserPromptMessage,
 | |
| )
 | |
| from core.model_runtime.entities.model_entities import AIModelEntity
 | |
| from core.model_runtime.errors.validate import CredentialsValidateFailedError
 | |
| from core.model_runtime.model_providers.chatglm.llm.llm import ChatGLMLargeLanguageModel
 | |
| from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
 | |
| 
 | |
| 
 | |
| def test_predefined_models():
 | |
|     model = ChatGLMLargeLanguageModel()
 | |
|     model_schemas = model.predefined_models()
 | |
|     assert len(model_schemas) >= 1
 | |
|     assert isinstance(model_schemas[0], AIModelEntity)
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
 | |
| def test_validate_credentials_for_chat_model(setup_openai_mock):
 | |
|     model = ChatGLMLargeLanguageModel()
 | |
| 
 | |
|     with pytest.raises(CredentialsValidateFailedError):
 | |
|         model.validate_credentials(model="chatglm2-6b", credentials={"api_base": "invalid_key"})
 | |
| 
 | |
|     model.validate_credentials(model="chatglm2-6b", credentials={"api_base": os.environ.get("CHATGLM_API_BASE")})
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
 | |
| def test_invoke_model(setup_openai_mock):
 | |
|     model = ChatGLMLargeLanguageModel()
 | |
| 
 | |
|     response = model.invoke(
 | |
|         model="chatglm2-6b",
 | |
|         credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
 | |
|         prompt_messages=[
 | |
|             SystemPromptMessage(
 | |
|                 content="You are a helpful AI assistant.",
 | |
|             ),
 | |
|             UserPromptMessage(content="Hello World!"),
 | |
|         ],
 | |
|         model_parameters={
 | |
|             "temperature": 0.7,
 | |
|             "top_p": 1.0,
 | |
|         },
 | |
|         stop=["you"],
 | |
|         user="abc-123",
 | |
|         stream=False,
 | |
|     )
 | |
| 
 | |
|     assert isinstance(response, LLMResult)
 | |
|     assert len(response.message.content) > 0
 | |
|     assert response.usage.total_tokens > 0
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
 | |
| def test_invoke_stream_model(setup_openai_mock):
 | |
|     model = ChatGLMLargeLanguageModel()
 | |
| 
 | |
|     response = model.invoke(
 | |
|         model="chatglm2-6b",
 | |
|         credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
 | |
|         prompt_messages=[
 | |
|             SystemPromptMessage(
 | |
|                 content="You are a helpful AI assistant.",
 | |
|             ),
 | |
|             UserPromptMessage(content="Hello World!"),
 | |
|         ],
 | |
|         model_parameters={
 | |
|             "temperature": 0.7,
 | |
|             "top_p": 1.0,
 | |
|         },
 | |
|         stop=["you"],
 | |
|         stream=True,
 | |
|         user="abc-123",
 | |
|     )
 | |
| 
 | |
|     assert isinstance(response, Generator)
 | |
|     for chunk in response:
 | |
|         assert isinstance(chunk, LLMResultChunk)
 | |
|         assert isinstance(chunk.delta, LLMResultChunkDelta)
 | |
|         assert isinstance(chunk.delta.message, AssistantPromptMessage)
 | |
|         assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
 | |
| def test_invoke_stream_model_with_functions(setup_openai_mock):
 | |
|     model = ChatGLMLargeLanguageModel()
 | |
| 
 | |
|     response = model.invoke(
 | |
|         model="chatglm3-6b",
 | |
|         credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
 | |
|         prompt_messages=[
 | |
|             SystemPromptMessage(
 | |
|                 content="你是一个天气机器人,你不知道今天的天气怎么样,你需要通过调用一个函数来获取天气信息。"
 | |
|             ),
 | |
|             UserPromptMessage(content="波士顿天气如何?"),
 | |
|         ],
 | |
|         model_parameters={
 | |
|             "temperature": 0,
 | |
|             "top_p": 1.0,
 | |
|         },
 | |
|         stop=["you"],
 | |
|         user="abc-123",
 | |
|         stream=True,
 | |
|         tools=[
 | |
|             PromptMessageTool(
 | |
|                 name="get_current_weather",
 | |
|                 description="Get the current weather in a given location",
 | |
|                 parameters={
 | |
|                     "type": "object",
 | |
|                     "properties": {
 | |
|                         "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
 | |
|                         "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
 | |
|                     },
 | |
|                     "required": ["location"],
 | |
|                 },
 | |
|             )
 | |
|         ],
 | |
|     )
 | |
| 
 | |
|     assert isinstance(response, Generator)
 | |
| 
 | |
|     call: LLMResultChunk = None
 | |
|     chunks = []
 | |
| 
 | |
|     for chunk in response:
 | |
|         chunks.append(chunk)
 | |
|         assert isinstance(chunk, LLMResultChunk)
 | |
|         assert isinstance(chunk.delta, LLMResultChunkDelta)
 | |
|         assert isinstance(chunk.delta.message, AssistantPromptMessage)
 | |
|         assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
 | |
| 
 | |
|         if chunk.delta.message.tool_calls and len(chunk.delta.message.tool_calls) > 0:
 | |
|             call = chunk
 | |
|             break
 | |
| 
 | |
|     assert call is not None
 | |
|     assert call.delta.message.tool_calls[0].function.name == "get_current_weather"
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
 | |
| def test_invoke_model_with_functions(setup_openai_mock):
 | |
|     model = ChatGLMLargeLanguageModel()
 | |
| 
 | |
|     response = model.invoke(
 | |
|         model="chatglm3-6b",
 | |
|         credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
 | |
|         prompt_messages=[UserPromptMessage(content="What is the weather like in San Francisco?")],
 | |
|         model_parameters={
 | |
|             "temperature": 0.7,
 | |
|             "top_p": 1.0,
 | |
|         },
 | |
|         stop=["you"],
 | |
|         user="abc-123",
 | |
|         stream=False,
 | |
|         tools=[
 | |
|             PromptMessageTool(
 | |
|                 name="get_current_weather",
 | |
|                 description="Get the current weather in a given location",
 | |
|                 parameters={
 | |
|                     "type": "object",
 | |
|                     "properties": {
 | |
|                         "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
 | |
|                         "unit": {"type": "string", "enum": ["c", "f"]},
 | |
|                     },
 | |
|                     "required": ["location"],
 | |
|                 },
 | |
|             )
 | |
|         ],
 | |
|     )
 | |
| 
 | |
|     assert isinstance(response, LLMResult)
 | |
|     assert len(response.message.content) > 0
 | |
|     assert response.usage.total_tokens > 0
 | |
|     assert response.message.tool_calls[0].function.name == "get_current_weather"
 | |
| 
 | |
| 
 | |
| def test_get_num_tokens():
 | |
|     model = ChatGLMLargeLanguageModel()
 | |
| 
 | |
|     num_tokens = model.get_num_tokens(
 | |
|         model="chatglm2-6b",
 | |
|         credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
 | |
|         prompt_messages=[
 | |
|             SystemPromptMessage(
 | |
|                 content="You are a helpful AI assistant.",
 | |
|             ),
 | |
|             UserPromptMessage(content="Hello World!"),
 | |
|         ],
 | |
|         tools=[
 | |
|             PromptMessageTool(
 | |
|                 name="get_current_weather",
 | |
|                 description="Get the current weather in a given location",
 | |
|                 parameters={
 | |
|                     "type": "object",
 | |
|                     "properties": {
 | |
|                         "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
 | |
|                         "unit": {"type": "string", "enum": ["c", "f"]},
 | |
|                     },
 | |
|                     "required": ["location"],
 | |
|                 },
 | |
|             )
 | |
|         ],
 | |
|     )
 | |
| 
 | |
|     assert isinstance(num_tokens, int)
 | |
|     assert num_tokens == 77
 | |
| 
 | |
|     num_tokens = model.get_num_tokens(
 | |
|         model="chatglm2-6b",
 | |
|         credentials={"api_base": os.environ.get("CHATGLM_API_BASE")},
 | |
|         prompt_messages=[
 | |
|             SystemPromptMessage(
 | |
|                 content="You are a helpful AI assistant.",
 | |
|             ),
 | |
|             UserPromptMessage(content="Hello World!"),
 | |
|         ],
 | |
|     )
 | |
| 
 | |
|     assert isinstance(num_tokens, int)
 | |
|     assert num_tokens == 21
 | 
