mirror of
				https://github.com/langgenius/dify.git
				synced 2025-11-04 04:43:09 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			98 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			98 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import logging
 | 
						|
import time
 | 
						|
 | 
						|
import click
 | 
						|
from celery import shared_task
 | 
						|
from werkzeug.exceptions import NotFound
 | 
						|
 | 
						|
from core.rag.datasource.vdb.vector_factory import Vector
 | 
						|
from core.rag.models.document import Document
 | 
						|
from extensions.ext_database import db
 | 
						|
from extensions.ext_redis import redis_client
 | 
						|
from models.dataset import Dataset
 | 
						|
from models.model import App, AppAnnotationSetting, MessageAnnotation
 | 
						|
from services.dataset_service import DatasetCollectionBindingService
 | 
						|
 | 
						|
 | 
						|
@shared_task(queue='dataset')
 | 
						|
def batch_import_annotations_task(job_id: str, content_list: list[dict], app_id: str, tenant_id: str,
 | 
						|
                                  user_id: str):
 | 
						|
    """
 | 
						|
    Add annotation to index.
 | 
						|
    :param job_id: job_id
 | 
						|
    :param content_list: content list
 | 
						|
    :param tenant_id: tenant id
 | 
						|
    :param app_id: app id
 | 
						|
    :param user_id: user_id
 | 
						|
 | 
						|
    """
 | 
						|
    logging.info(click.style('Start batch import annotation: {}'.format(job_id), fg='green'))
 | 
						|
    start_at = time.perf_counter()
 | 
						|
    indexing_cache_key = 'app_annotation_batch_import_{}'.format(str(job_id))
 | 
						|
    # get app info
 | 
						|
    app = db.session.query(App).filter(
 | 
						|
        App.id == app_id,
 | 
						|
        App.tenant_id == tenant_id,
 | 
						|
        App.status == 'normal'
 | 
						|
    ).first()
 | 
						|
 | 
						|
    if app:
 | 
						|
        try:
 | 
						|
            documents = []
 | 
						|
            for content in content_list:
 | 
						|
                annotation = MessageAnnotation(
 | 
						|
                    app_id=app.id,
 | 
						|
                    content=content['answer'],
 | 
						|
                    question=content['question'],
 | 
						|
                    account_id=user_id
 | 
						|
                )
 | 
						|
                db.session.add(annotation)
 | 
						|
                db.session.flush()
 | 
						|
 | 
						|
                document = Document(
 | 
						|
                    page_content=content['question'],
 | 
						|
                    metadata={
 | 
						|
                        "annotation_id": annotation.id,
 | 
						|
                        "app_id": app_id,
 | 
						|
                        "doc_id": annotation.id
 | 
						|
                    }
 | 
						|
                )
 | 
						|
                documents.append(document)
 | 
						|
            # if annotation reply is enabled , batch add annotations' index
 | 
						|
            app_annotation_setting = db.session.query(AppAnnotationSetting).filter(
 | 
						|
                AppAnnotationSetting.app_id == app_id
 | 
						|
            ).first()
 | 
						|
 | 
						|
            if app_annotation_setting:
 | 
						|
                dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type(
 | 
						|
                    app_annotation_setting.collection_binding_id,
 | 
						|
                    'annotation'
 | 
						|
                )
 | 
						|
                if not dataset_collection_binding:
 | 
						|
                    raise NotFound("App annotation setting not found")
 | 
						|
                dataset = Dataset(
 | 
						|
                    id=app_id,
 | 
						|
                    tenant_id=tenant_id,
 | 
						|
                    indexing_technique='high_quality',
 | 
						|
                    embedding_model_provider=dataset_collection_binding.provider_name,
 | 
						|
                    embedding_model=dataset_collection_binding.model_name,
 | 
						|
                    collection_binding_id=dataset_collection_binding.id
 | 
						|
                )
 | 
						|
 | 
						|
                vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id'])
 | 
						|
                vector.create(documents, duplicate_check=True)
 | 
						|
 | 
						|
            db.session.commit()
 | 
						|
            redis_client.setex(indexing_cache_key, 600, 'completed')
 | 
						|
            end_at = time.perf_counter()
 | 
						|
            logging.info(
 | 
						|
                click.style(
 | 
						|
                    'Build index successful for batch import annotation: {} latency: {}'.format(job_id, end_at - start_at),
 | 
						|
                    fg='green'))
 | 
						|
        except Exception as e:
 | 
						|
            db.session.rollback()
 | 
						|
            redis_client.setex(indexing_cache_key, 600, 'error')
 | 
						|
            indexing_error_msg_key = 'app_annotation_batch_import_error_msg_{}'.format(str(job_id))
 | 
						|
            redis_client.setex(indexing_error_msg_key, 600, str(e))
 | 
						|
            logging.exception("Build index for batch import annotations failed")
 |