mirror of
				https://github.com/langgenius/dify.git
				synced 2025-11-04 12:53:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			62 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			62 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import logging
 | 
						|
import time
 | 
						|
 | 
						|
import click
 | 
						|
from celery import shared_task
 | 
						|
 | 
						|
from core.rag.datasource.vdb.vector_factory import Vector
 | 
						|
from core.rag.models.document import Document
 | 
						|
from models.dataset import Dataset
 | 
						|
from services.dataset_service import DatasetCollectionBindingService
 | 
						|
 | 
						|
 | 
						|
@shared_task(queue='dataset')
 | 
						|
def update_annotation_to_index_task(annotation_id: str, question: str, tenant_id: str, app_id: str,
 | 
						|
                                    collection_binding_id: str):
 | 
						|
    """
 | 
						|
    Update annotation to index.
 | 
						|
    :param annotation_id: annotation id
 | 
						|
    :param question: question
 | 
						|
    :param tenant_id: tenant id
 | 
						|
    :param app_id: app id
 | 
						|
    :param collection_binding_id: embedding binding id
 | 
						|
 | 
						|
    Usage: clean_dataset_task.delay(dataset_id, tenant_id, indexing_technique, index_struct)
 | 
						|
    """
 | 
						|
    logging.info(click.style('Start update index for annotation: {}'.format(annotation_id), fg='green'))
 | 
						|
    start_at = time.perf_counter()
 | 
						|
 | 
						|
    try:
 | 
						|
        dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type(
 | 
						|
            collection_binding_id,
 | 
						|
            'annotation'
 | 
						|
        )
 | 
						|
 | 
						|
        dataset = Dataset(
 | 
						|
            id=app_id,
 | 
						|
            tenant_id=tenant_id,
 | 
						|
            indexing_technique='high_quality',
 | 
						|
            embedding_model_provider=dataset_collection_binding.provider_name,
 | 
						|
            embedding_model=dataset_collection_binding.model_name,
 | 
						|
            collection_binding_id=dataset_collection_binding.id
 | 
						|
        )
 | 
						|
 | 
						|
        document = Document(
 | 
						|
            page_content=question,
 | 
						|
            metadata={
 | 
						|
                "annotation_id": annotation_id,
 | 
						|
                "app_id": app_id,
 | 
						|
                "doc_id": annotation_id
 | 
						|
            }
 | 
						|
        )
 | 
						|
        vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id'])
 | 
						|
        vector.delete_by_metadata_field('annotation_id', annotation_id)
 | 
						|
        vector.add_texts([document])
 | 
						|
        end_at = time.perf_counter()
 | 
						|
        logging.info(
 | 
						|
            click.style(
 | 
						|
                'Build index successful for annotation: {} latency: {}'.format(annotation_id, end_at - start_at),
 | 
						|
                fg='green'))
 | 
						|
    except Exception:
 | 
						|
        logging.exception("Build index for annotation failed")
 |