mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-26 00:18:44 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			427 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			427 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import json
 | |
| from abc import ABC, abstractmethod
 | |
| from collections.abc import Generator, Mapping, Sequence
 | |
| from typing import Any, Optional
 | |
| 
 | |
| from core.agent.base_agent_runner import BaseAgentRunner
 | |
| from core.agent.entities import AgentScratchpadUnit
 | |
| from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
 | |
| from core.app.apps.base_app_queue_manager import PublishFrom
 | |
| from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
 | |
| from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
 | |
| from core.model_runtime.entities.message_entities import (
 | |
|     AssistantPromptMessage,
 | |
|     PromptMessage,
 | |
|     PromptMessageTool,
 | |
|     ToolPromptMessage,
 | |
|     UserPromptMessage,
 | |
| )
 | |
| from core.ops.ops_trace_manager import TraceQueueManager
 | |
| from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
 | |
| from core.tools.__base.tool import Tool
 | |
| from core.tools.entities.tool_entities import ToolInvokeMeta
 | |
| from core.tools.tool_engine import ToolEngine
 | |
| from models.model import Message
 | |
| 
 | |
| 
 | |
| class CotAgentRunner(BaseAgentRunner, ABC):
 | |
|     _is_first_iteration = True
 | |
|     _ignore_observation_providers = ["wenxin"]
 | |
|     _historic_prompt_messages: list[PromptMessage]
 | |
|     _agent_scratchpad: list[AgentScratchpadUnit]
 | |
|     _instruction: str
 | |
|     _query: str
 | |
|     _prompt_messages_tools: Sequence[PromptMessageTool]
 | |
| 
 | |
|     def run(
 | |
|         self,
 | |
|         message: Message,
 | |
|         query: str,
 | |
|         inputs: Mapping[str, str],
 | |
|     ) -> Generator:
 | |
|         """
 | |
|         Run Cot agent application
 | |
|         """
 | |
| 
 | |
|         app_generate_entity = self.application_generate_entity
 | |
|         self._repack_app_generate_entity(app_generate_entity)
 | |
|         self._init_react_state(query)
 | |
| 
 | |
|         trace_manager = app_generate_entity.trace_manager
 | |
| 
 | |
|         # check model mode
 | |
|         if "Observation" not in app_generate_entity.model_conf.stop:
 | |
|             if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:
 | |
|                 app_generate_entity.model_conf.stop.append("Observation")
 | |
| 
 | |
|         app_config = self.app_config
 | |
|         assert app_config.agent
 | |
| 
 | |
|         # init instruction
 | |
|         inputs = inputs or {}
 | |
|         instruction = app_config.prompt_template.simple_prompt_template or ""
 | |
|         self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
 | |
| 
 | |
|         iteration_step = 1
 | |
|         max_iteration_steps = min(app_config.agent.max_iteration if app_config.agent else 5, 5) + 1
 | |
| 
 | |
|         # convert tools into ModelRuntime Tool format
 | |
|         tool_instances, prompt_messages_tools = self._init_prompt_tools()
 | |
|         self._prompt_messages_tools = prompt_messages_tools
 | |
| 
 | |
|         function_call_state = True
 | |
|         llm_usage: dict[str, Optional[LLMUsage]] = {"usage": None}
 | |
|         final_answer = ""
 | |
| 
 | |
|         def increase_usage(final_llm_usage_dict: dict[str, Optional[LLMUsage]], usage: LLMUsage):
 | |
|             if not final_llm_usage_dict["usage"]:
 | |
|                 final_llm_usage_dict["usage"] = usage
 | |
|             else:
 | |
|                 llm_usage = final_llm_usage_dict["usage"]
 | |
|                 llm_usage.prompt_tokens += usage.prompt_tokens
 | |
|                 llm_usage.completion_tokens += usage.completion_tokens
 | |
|                 llm_usage.total_tokens += usage.total_tokens
 | |
|                 llm_usage.prompt_price += usage.prompt_price
 | |
|                 llm_usage.completion_price += usage.completion_price
 | |
|                 llm_usage.total_price += usage.total_price
 | |
| 
 | |
|         model_instance = self.model_instance
 | |
| 
 | |
|         while function_call_state and iteration_step <= max_iteration_steps:
 | |
|             # continue to run until there is not any tool call
 | |
|             function_call_state = False
 | |
| 
 | |
|             if iteration_step == max_iteration_steps:
 | |
|                 # the last iteration, remove all tools
 | |
|                 self._prompt_messages_tools = []
 | |
| 
 | |
|             message_file_ids: list[str] = []
 | |
| 
 | |
|             agent_thought = self.create_agent_thought(
 | |
|                 message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
 | |
|             )
 | |
| 
 | |
|             if iteration_step > 1:
 | |
|                 self.queue_manager.publish(
 | |
|                     QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 | |
|                 )
 | |
| 
 | |
|             # recalc llm max tokens
 | |
|             prompt_messages = self._organize_prompt_messages()
 | |
|             self.recalc_llm_max_tokens(self.model_config, prompt_messages)
 | |
|             # invoke model
 | |
|             chunks = model_instance.invoke_llm(
 | |
|                 prompt_messages=prompt_messages,
 | |
|                 model_parameters=app_generate_entity.model_conf.parameters,
 | |
|                 tools=[],
 | |
|                 stop=app_generate_entity.model_conf.stop,
 | |
|                 stream=True,
 | |
|                 user=self.user_id,
 | |
|                 callbacks=[],
 | |
|             )
 | |
| 
 | |
|             usage_dict: dict[str, Optional[LLMUsage]] = {}
 | |
|             react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict)
 | |
|             scratchpad = AgentScratchpadUnit(
 | |
|                 agent_response="",
 | |
|                 thought="",
 | |
|                 action_str="",
 | |
|                 observation="",
 | |
|                 action=None,
 | |
|             )
 | |
| 
 | |
|             # publish agent thought if it's first iteration
 | |
|             if iteration_step == 1:
 | |
|                 self.queue_manager.publish(
 | |
|                     QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 | |
|                 )
 | |
| 
 | |
|             for chunk in react_chunks:
 | |
|                 if isinstance(chunk, AgentScratchpadUnit.Action):
 | |
|                     action = chunk
 | |
|                     # detect action
 | |
|                     assert scratchpad.agent_response is not None
 | |
|                     scratchpad.agent_response += json.dumps(chunk.model_dump())
 | |
|                     scratchpad.action_str = json.dumps(chunk.model_dump())
 | |
|                     scratchpad.action = action
 | |
|                 else:
 | |
|                     assert scratchpad.agent_response is not None
 | |
|                     scratchpad.agent_response += chunk
 | |
|                     assert scratchpad.thought is not None
 | |
|                     scratchpad.thought += chunk
 | |
|                     yield LLMResultChunk(
 | |
|                         model=self.model_config.model,
 | |
|                         prompt_messages=prompt_messages,
 | |
|                         system_fingerprint="",
 | |
|                         delta=LLMResultChunkDelta(index=0, message=AssistantPromptMessage(content=chunk), usage=None),
 | |
|                     )
 | |
| 
 | |
|             assert scratchpad.thought is not None
 | |
|             scratchpad.thought = scratchpad.thought.strip() or "I am thinking about how to help you"
 | |
|             self._agent_scratchpad.append(scratchpad)
 | |
| 
 | |
|             # get llm usage
 | |
|             if "usage" in usage_dict:
 | |
|                 if usage_dict["usage"] is not None:
 | |
|                     increase_usage(llm_usage, usage_dict["usage"])
 | |
|             else:
 | |
|                 usage_dict["usage"] = LLMUsage.empty_usage()
 | |
| 
 | |
|             self.save_agent_thought(
 | |
|                 agent_thought=agent_thought,
 | |
|                 tool_name=(scratchpad.action.action_name if scratchpad.action and not scratchpad.is_final() else ""),
 | |
|                 tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
 | |
|                 tool_invoke_meta={},
 | |
|                 thought=scratchpad.thought or "",
 | |
|                 observation="",
 | |
|                 answer=scratchpad.agent_response or "",
 | |
|                 messages_ids=[],
 | |
|                 llm_usage=usage_dict["usage"],
 | |
|             )
 | |
| 
 | |
|             if not scratchpad.is_final():
 | |
|                 self.queue_manager.publish(
 | |
|                     QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 | |
|                 )
 | |
| 
 | |
|             if not scratchpad.action:
 | |
|                 # failed to extract action, return final answer directly
 | |
|                 final_answer = ""
 | |
|             else:
 | |
|                 if scratchpad.action.action_name.lower() == "final answer":
 | |
|                     # action is final answer, return final answer directly
 | |
|                     try:
 | |
|                         if isinstance(scratchpad.action.action_input, dict):
 | |
|                             final_answer = json.dumps(scratchpad.action.action_input, ensure_ascii=False)
 | |
|                         elif isinstance(scratchpad.action.action_input, str):
 | |
|                             final_answer = scratchpad.action.action_input
 | |
|                         else:
 | |
|                             final_answer = f"{scratchpad.action.action_input}"
 | |
|                     except json.JSONDecodeError:
 | |
|                         final_answer = f"{scratchpad.action.action_input}"
 | |
|                 else:
 | |
|                     function_call_state = True
 | |
|                     # action is tool call, invoke tool
 | |
|                     tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
 | |
|                         action=scratchpad.action,
 | |
|                         tool_instances=tool_instances,
 | |
|                         message_file_ids=message_file_ids,
 | |
|                         trace_manager=trace_manager,
 | |
|                     )
 | |
|                     scratchpad.observation = tool_invoke_response
 | |
|                     scratchpad.agent_response = tool_invoke_response
 | |
| 
 | |
|                     self.save_agent_thought(
 | |
|                         agent_thought=agent_thought,
 | |
|                         tool_name=scratchpad.action.action_name,
 | |
|                         tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
 | |
|                         thought=scratchpad.thought or "",
 | |
|                         observation={scratchpad.action.action_name: tool_invoke_response},
 | |
|                         tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()},
 | |
|                         answer=scratchpad.agent_response,
 | |
|                         messages_ids=message_file_ids,
 | |
|                         llm_usage=usage_dict["usage"],
 | |
|                     )
 | |
| 
 | |
|                     self.queue_manager.publish(
 | |
|                         QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 | |
|                     )
 | |
| 
 | |
|                 # update prompt tool message
 | |
|                 for prompt_tool in self._prompt_messages_tools:
 | |
|                     self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
 | |
| 
 | |
|             iteration_step += 1
 | |
| 
 | |
|         yield LLMResultChunk(
 | |
|             model=model_instance.model,
 | |
|             prompt_messages=prompt_messages,
 | |
|             delta=LLMResultChunkDelta(
 | |
|                 index=0, message=AssistantPromptMessage(content=final_answer), usage=llm_usage["usage"]
 | |
|             ),
 | |
|             system_fingerprint="",
 | |
|         )
 | |
| 
 | |
|         # save agent thought
 | |
|         self.save_agent_thought(
 | |
|             agent_thought=agent_thought,
 | |
|             tool_name="",
 | |
|             tool_input={},
 | |
|             tool_invoke_meta={},
 | |
|             thought=final_answer,
 | |
|             observation={},
 | |
|             answer=final_answer,
 | |
|             messages_ids=[],
 | |
|         )
 | |
|         # publish end event
 | |
|         self.queue_manager.publish(
 | |
|             QueueMessageEndEvent(
 | |
|                 llm_result=LLMResult(
 | |
|                     model=model_instance.model,
 | |
|                     prompt_messages=prompt_messages,
 | |
|                     message=AssistantPromptMessage(content=final_answer),
 | |
|                     usage=llm_usage["usage"] or LLMUsage.empty_usage(),
 | |
|                     system_fingerprint="",
 | |
|                 )
 | |
|             ),
 | |
|             PublishFrom.APPLICATION_MANAGER,
 | |
|         )
 | |
| 
 | |
|     def _handle_invoke_action(
 | |
|         self,
 | |
|         action: AgentScratchpadUnit.Action,
 | |
|         tool_instances: Mapping[str, Tool],
 | |
|         message_file_ids: list[str],
 | |
|         trace_manager: Optional[TraceQueueManager] = None,
 | |
|     ) -> tuple[str, ToolInvokeMeta]:
 | |
|         """
 | |
|         handle invoke action
 | |
|         :param action: action
 | |
|         :param tool_instances: tool instances
 | |
|         :param message_file_ids: message file ids
 | |
|         :param trace_manager: trace manager
 | |
|         :return: observation, meta
 | |
|         """
 | |
|         # action is tool call, invoke tool
 | |
|         tool_call_name = action.action_name
 | |
|         tool_call_args = action.action_input
 | |
|         tool_instance = tool_instances.get(tool_call_name)
 | |
| 
 | |
|         if not tool_instance:
 | |
|             answer = f"there is not a tool named {tool_call_name}"
 | |
|             return answer, ToolInvokeMeta.error_instance(answer)
 | |
| 
 | |
|         if isinstance(tool_call_args, str):
 | |
|             try:
 | |
|                 tool_call_args = json.loads(tool_call_args)
 | |
|             except json.JSONDecodeError:
 | |
|                 pass
 | |
| 
 | |
|         # invoke tool
 | |
|         tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
 | |
|             tool=tool_instance,
 | |
|             tool_parameters=tool_call_args,
 | |
|             user_id=self.user_id,
 | |
|             tenant_id=self.tenant_id,
 | |
|             message=self.message,
 | |
|             invoke_from=self.application_generate_entity.invoke_from,
 | |
|             agent_tool_callback=self.agent_callback,
 | |
|             trace_manager=trace_manager,
 | |
|         )
 | |
| 
 | |
|         # publish files
 | |
|         for message_file_id in message_files:
 | |
|             # publish message file
 | |
|             self.queue_manager.publish(
 | |
|                 QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
 | |
|             )
 | |
|             # add message file ids
 | |
|             message_file_ids.append(message_file_id)
 | |
| 
 | |
|         return tool_invoke_response, tool_invoke_meta
 | |
| 
 | |
|     def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
 | |
|         """
 | |
|         convert dict to action
 | |
|         """
 | |
|         return AgentScratchpadUnit.Action(action_name=action["action"], action_input=action["action_input"])
 | |
| 
 | |
|     def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: Mapping[str, Any]) -> str:
 | |
|         """
 | |
|         fill in inputs from external data tools
 | |
|         """
 | |
|         for key, value in inputs.items():
 | |
|             try:
 | |
|                 instruction = instruction.replace(f"{{{{{key}}}}}", str(value))
 | |
|             except Exception:
 | |
|                 continue
 | |
| 
 | |
|         return instruction
 | |
| 
 | |
|     def _init_react_state(self, query) -> None:
 | |
|         """
 | |
|         init agent scratchpad
 | |
|         """
 | |
|         self._query = query
 | |
|         self._agent_scratchpad = []
 | |
|         self._historic_prompt_messages = self._organize_historic_prompt_messages()
 | |
| 
 | |
|     @abstractmethod
 | |
|     def _organize_prompt_messages(self) -> list[PromptMessage]:
 | |
|         """
 | |
|         organize prompt messages
 | |
|         """
 | |
| 
 | |
|     def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
 | |
|         """
 | |
|         format assistant message
 | |
|         """
 | |
|         message = ""
 | |
|         for scratchpad in agent_scratchpad:
 | |
|             if scratchpad.is_final():
 | |
|                 message += f"Final Answer: {scratchpad.agent_response}"
 | |
|             else:
 | |
|                 message += f"Thought: {scratchpad.thought}\n\n"
 | |
|                 if scratchpad.action_str:
 | |
|                     message += f"Action: {scratchpad.action_str}\n\n"
 | |
|                 if scratchpad.observation:
 | |
|                     message += f"Observation: {scratchpad.observation}\n\n"
 | |
| 
 | |
|         return message
 | |
| 
 | |
|     def _organize_historic_prompt_messages(
 | |
|         self, current_session_messages: list[PromptMessage] | None = None
 | |
|     ) -> list[PromptMessage]:
 | |
|         """
 | |
|         organize historic prompt messages
 | |
|         """
 | |
|         result: list[PromptMessage] = []
 | |
|         scratchpads: list[AgentScratchpadUnit] = []
 | |
|         current_scratchpad: AgentScratchpadUnit | None = None
 | |
| 
 | |
|         for message in self.history_prompt_messages:
 | |
|             if isinstance(message, AssistantPromptMessage):
 | |
|                 if not current_scratchpad:
 | |
|                     assert isinstance(message.content, str)
 | |
|                     current_scratchpad = AgentScratchpadUnit(
 | |
|                         agent_response=message.content,
 | |
|                         thought=message.content or "I am thinking about how to help you",
 | |
|                         action_str="",
 | |
|                         action=None,
 | |
|                         observation=None,
 | |
|                     )
 | |
|                     scratchpads.append(current_scratchpad)
 | |
|                 if message.tool_calls:
 | |
|                     try:
 | |
|                         current_scratchpad.action = AgentScratchpadUnit.Action(
 | |
|                             action_name=message.tool_calls[0].function.name,
 | |
|                             action_input=json.loads(message.tool_calls[0].function.arguments),
 | |
|                         )
 | |
|                         current_scratchpad.action_str = json.dumps(current_scratchpad.action.to_dict())
 | |
|                     except:
 | |
|                         pass
 | |
|             elif isinstance(message, ToolPromptMessage):
 | |
|                 if current_scratchpad:
 | |
|                     assert isinstance(message.content, str)
 | |
|                     current_scratchpad.observation = message.content
 | |
|                 else:
 | |
|                     raise NotImplementedError("expected str type")
 | |
|             elif isinstance(message, UserPromptMessage):
 | |
|                 if scratchpads:
 | |
|                     result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
 | |
|                     scratchpads = []
 | |
|                     current_scratchpad = None
 | |
| 
 | |
|                 result.append(message)
 | |
| 
 | |
|         if scratchpads:
 | |
|             result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
 | |
| 
 | |
|         historic_prompts = AgentHistoryPromptTransform(
 | |
|             model_config=self.model_config,
 | |
|             prompt_messages=current_session_messages or [],
 | |
|             history_messages=result,
 | |
|             memory=self.memory,
 | |
|         ).get_prompt()
 | |
|         return historic_prompts
 | 
