mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-31 10:53:02 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			583 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			583 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import enum
 | |
| import json
 | |
| import os
 | |
| import re
 | |
| from typing import List, Optional, Tuple, cast
 | |
| 
 | |
| from core.entities.application_entities import (AdvancedCompletionPromptTemplateEntity, ModelConfigEntity,
 | |
|                                                 PromptTemplateEntity)
 | |
| from core.file.file_obj import FileObj
 | |
| from core.memory.token_buffer_memory import TokenBufferMemory
 | |
| from core.model_runtime.entities.message_entities import (AssistantPromptMessage, PromptMessage, PromptMessageRole,
 | |
|                                                           SystemPromptMessage, TextPromptMessageContent,
 | |
|                                                           UserPromptMessage)
 | |
| from core.model_runtime.entities.model_entities import ModelPropertyKey
 | |
| from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
 | |
| from core.prompt.prompt_builder import PromptBuilder
 | |
| from core.prompt.prompt_template import PromptTemplateParser
 | |
| 
 | |
| 
 | |
| class AppMode(enum.Enum):
 | |
|     COMPLETION = 'completion'
 | |
|     CHAT = 'chat'
 | |
| 
 | |
|     @classmethod
 | |
|     def value_of(cls, value: str) -> 'AppMode':
 | |
|         """
 | |
|         Get value of given mode.
 | |
| 
 | |
|         :param value: mode value
 | |
|         :return: mode
 | |
|         """
 | |
|         for mode in cls:
 | |
|             if mode.value == value:
 | |
|                 return mode
 | |
|         raise ValueError(f'invalid mode value {value}')
 | |
| 
 | |
| 
 | |
| class ModelMode(enum.Enum):
 | |
|     COMPLETION = 'completion'
 | |
|     CHAT = 'chat'
 | |
| 
 | |
|     @classmethod
 | |
|     def value_of(cls, value: str) -> 'ModelMode':
 | |
|         """
 | |
|         Get value of given mode.
 | |
| 
 | |
|         :param value: mode value
 | |
|         :return: mode
 | |
|         """
 | |
|         for mode in cls:
 | |
|             if mode.value == value:
 | |
|                 return mode
 | |
|         raise ValueError(f'invalid mode value {value}')
 | |
| 
 | |
| 
 | |
| class PromptTransform:
 | |
|     def get_prompt(self,
 | |
|                    app_mode: str,
 | |
|                    prompt_template_entity: PromptTemplateEntity,
 | |
|                    inputs: dict,
 | |
|                    query: str,
 | |
|                    files: List[FileObj],
 | |
|                    context: Optional[str],
 | |
|                    memory: Optional[TokenBufferMemory],
 | |
|                    model_config: ModelConfigEntity) -> \
 | |
|             Tuple[List[PromptMessage], Optional[List[str]]]:
 | |
|         app_mode = AppMode.value_of(app_mode)
 | |
|         model_mode = ModelMode.value_of(model_config.mode)
 | |
| 
 | |
|         prompt_rules = self._read_prompt_rules_from_file(self._prompt_file_name(
 | |
|             app_mode=app_mode,
 | |
|             provider=model_config.provider,
 | |
|             model=model_config.model
 | |
|         ))
 | |
| 
 | |
|         if app_mode == AppMode.CHAT and model_mode == ModelMode.CHAT:
 | |
|             stops = None
 | |
| 
 | |
|             prompt_messages = self._get_simple_chat_app_chat_model_prompt_messages(
 | |
|                 prompt_rules=prompt_rules,
 | |
|                 pre_prompt=prompt_template_entity.simple_prompt_template,
 | |
|                 inputs=inputs,
 | |
|                 query=query,
 | |
|                 files=files,
 | |
|                 context=context,
 | |
|                 memory=memory,
 | |
|                 model_config=model_config
 | |
|             )
 | |
|         else:
 | |
|             stops = prompt_rules.get('stops')
 | |
|             if stops is not None and len(stops) == 0:
 | |
|                 stops = None
 | |
| 
 | |
|             prompt_messages = self._get_simple_others_prompt_messages(
 | |
|                 prompt_rules=prompt_rules,
 | |
|                 pre_prompt=prompt_template_entity.simple_prompt_template,
 | |
|                 inputs=inputs,
 | |
|                 query=query,
 | |
|                 files=files,
 | |
|                 context=context,
 | |
|                 memory=memory,
 | |
|                 model_config=model_config
 | |
|             )
 | |
|         return prompt_messages, stops
 | |
| 
 | |
|     def get_advanced_prompt(self, app_mode: str,
 | |
|                             prompt_template_entity: PromptTemplateEntity,
 | |
|                             inputs: dict,
 | |
|                             query: str,
 | |
|                             files: List[FileObj],
 | |
|                             context: Optional[str],
 | |
|                             memory: Optional[TokenBufferMemory],
 | |
|                             model_config: ModelConfigEntity) -> List[PromptMessage]:
 | |
|         app_mode = AppMode.value_of(app_mode)
 | |
|         model_mode = ModelMode.value_of(model_config.mode)
 | |
| 
 | |
|         prompt_messages = []
 | |
| 
 | |
|         if app_mode == AppMode.CHAT:
 | |
|             if model_mode == ModelMode.COMPLETION:
 | |
|                 prompt_messages = self._get_chat_app_completion_model_prompt_messages(
 | |
|                     prompt_template_entity=prompt_template_entity,
 | |
|                     inputs=inputs,
 | |
|                     query=query,
 | |
|                     files=files,
 | |
|                     context=context,
 | |
|                     memory=memory,
 | |
|                     model_config=model_config
 | |
|                 )
 | |
|             elif model_mode == ModelMode.CHAT:
 | |
|                 prompt_messages = self._get_chat_app_chat_model_prompt_messages(
 | |
|                     prompt_template_entity=prompt_template_entity,
 | |
|                     inputs=inputs,
 | |
|                     query=query,
 | |
|                     files=files,
 | |
|                     context=context,
 | |
|                     memory=memory,
 | |
|                     model_config=model_config
 | |
|                 )
 | |
|         elif app_mode == AppMode.COMPLETION:
 | |
|             if model_mode == ModelMode.CHAT:
 | |
|                 prompt_messages = self._get_completion_app_chat_model_prompt_messages(
 | |
|                     prompt_template_entity=prompt_template_entity,
 | |
|                     inputs=inputs,
 | |
|                     files=files,
 | |
|                     context=context,
 | |
|                 )
 | |
|             elif model_mode == ModelMode.COMPLETION:
 | |
|                 prompt_messages = self._get_completion_app_completion_model_prompt_messages(
 | |
|                     prompt_template_entity=prompt_template_entity,
 | |
|                     inputs=inputs,
 | |
|                     context=context,
 | |
|                 )
 | |
| 
 | |
|         return prompt_messages
 | |
| 
 | |
|     def _get_history_messages_from_memory(self, memory: TokenBufferMemory,
 | |
|                                           max_token_limit: int,
 | |
|                                           human_prefix: Optional[str] = None,
 | |
|                                           ai_prefix: Optional[str] = None) -> str:
 | |
|         """Get memory messages."""
 | |
|         kwargs = {
 | |
|             "max_token_limit": max_token_limit
 | |
|         }
 | |
| 
 | |
|         if human_prefix:
 | |
|             kwargs['human_prefix'] = human_prefix
 | |
| 
 | |
|         if ai_prefix:
 | |
|             kwargs['ai_prefix'] = ai_prefix
 | |
| 
 | |
|         return memory.get_history_prompt_text(
 | |
|             **kwargs
 | |
|         )
 | |
| 
 | |
|     def _get_history_messages_list_from_memory(self, memory: TokenBufferMemory,
 | |
|                                                max_token_limit: int) -> List[PromptMessage]:
 | |
|         """Get memory messages."""
 | |
|         return memory.get_history_prompt_messages(
 | |
|             max_token_limit=max_token_limit
 | |
|         )
 | |
| 
 | |
|     def _prompt_file_name(self, app_mode: AppMode, provider: str, model: str) -> str:
 | |
|         # baichuan
 | |
|         if provider == 'baichuan':
 | |
|             return self._prompt_file_name_for_baichuan(app_mode)
 | |
| 
 | |
|         baichuan_supported_providers = ["huggingface_hub", "openllm", "xinference"]
 | |
|         if provider in baichuan_supported_providers and 'baichuan' in model.lower():
 | |
|             return self._prompt_file_name_for_baichuan(app_mode)
 | |
| 
 | |
|         # common
 | |
|         if app_mode == AppMode.COMPLETION:
 | |
|             return 'common_completion'
 | |
|         else:
 | |
|             return 'common_chat'
 | |
| 
 | |
|     def _prompt_file_name_for_baichuan(self, app_mode: AppMode) -> str:
 | |
|         if app_mode == AppMode.COMPLETION:
 | |
|             return 'baichuan_completion'
 | |
|         else:
 | |
|             return 'baichuan_chat'
 | |
| 
 | |
|     def _read_prompt_rules_from_file(self, prompt_name: str) -> dict:
 | |
|         # Get the absolute path of the subdirectory
 | |
|         prompt_path = os.path.join(
 | |
|             os.path.dirname(os.path.realpath(__file__)),
 | |
|             'generate_prompts')
 | |
| 
 | |
|         json_file_path = os.path.join(prompt_path, f'{prompt_name}.json')
 | |
|         # Open the JSON file and read its content
 | |
|         with open(json_file_path, 'r', encoding='utf-8') as json_file:
 | |
|             return json.load(json_file)
 | |
| 
 | |
|     def _get_simple_chat_app_chat_model_prompt_messages(self, prompt_rules: dict,
 | |
|                                                         pre_prompt: str,
 | |
|                                                         inputs: dict,
 | |
|                                                         query: str,
 | |
|                                                         context: Optional[str],
 | |
|                                                         files: List[FileObj],
 | |
|                                                         memory: Optional[TokenBufferMemory],
 | |
|                                                         model_config: ModelConfigEntity) -> List[PromptMessage]:
 | |
|         prompt_messages = []
 | |
| 
 | |
|         context_prompt_content = ''
 | |
|         if context and 'context_prompt' in prompt_rules:
 | |
|             prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
 | |
|             context_prompt_content = prompt_template.format(
 | |
|                 {'context': context}
 | |
|             )
 | |
| 
 | |
|         pre_prompt_content = ''
 | |
|         if pre_prompt:
 | |
|             prompt_template = PromptTemplateParser(template=pre_prompt)
 | |
|             prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
 | |
|             pre_prompt_content = prompt_template.format(
 | |
|                 prompt_inputs
 | |
|             )
 | |
| 
 | |
|         prompt = ''
 | |
|         for order in prompt_rules['system_prompt_orders']:
 | |
|             if order == 'context_prompt':
 | |
|                 prompt += context_prompt_content
 | |
|             elif order == 'pre_prompt':
 | |
|                 prompt += pre_prompt_content
 | |
| 
 | |
|         prompt = re.sub(r'<\|.*?\|>', '', prompt)
 | |
| 
 | |
|         if prompt:
 | |
|             prompt_messages.append(SystemPromptMessage(content=prompt))
 | |
| 
 | |
|         self._append_chat_histories(
 | |
|             memory=memory,
 | |
|             prompt_messages=prompt_messages,
 | |
|             model_config=model_config
 | |
|         )
 | |
| 
 | |
|         if files:
 | |
|             prompt_message_contents = [TextPromptMessageContent(data=query)]
 | |
|             for file in files:
 | |
|                 prompt_message_contents.append(file.prompt_message_content)
 | |
| 
 | |
|             prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
 | |
|         else:
 | |
|             prompt_messages.append(UserPromptMessage(content=query))
 | |
| 
 | |
|         return prompt_messages
 | |
| 
 | |
|     def _get_simple_others_prompt_messages(self, prompt_rules: dict,
 | |
|                                            pre_prompt: str,
 | |
|                                            inputs: dict,
 | |
|                                            query: str,
 | |
|                                            context: Optional[str],
 | |
|                                            memory: Optional[TokenBufferMemory],
 | |
|                                            files: List[FileObj],
 | |
|                                            model_config: ModelConfigEntity) -> List[PromptMessage]:
 | |
|         context_prompt_content = ''
 | |
|         if context and 'context_prompt' in prompt_rules:
 | |
|             prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
 | |
|             context_prompt_content = prompt_template.format(
 | |
|                 {'context': context}
 | |
|             )
 | |
| 
 | |
|         pre_prompt_content = ''
 | |
|         if pre_prompt:
 | |
|             prompt_template = PromptTemplateParser(template=pre_prompt)
 | |
|             prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
 | |
|             pre_prompt_content = prompt_template.format(
 | |
|                 prompt_inputs
 | |
|             )
 | |
| 
 | |
|         prompt = ''
 | |
|         for order in prompt_rules['system_prompt_orders']:
 | |
|             if order == 'context_prompt':
 | |
|                 prompt += context_prompt_content
 | |
|             elif order == 'pre_prompt':
 | |
|                 prompt += pre_prompt_content
 | |
| 
 | |
|         query_prompt = prompt_rules['query_prompt'] if 'query_prompt' in prompt_rules else '{{query}}'
 | |
| 
 | |
|         if memory and 'histories_prompt' in prompt_rules:
 | |
|             # append chat histories
 | |
|             tmp_human_message = UserPromptMessage(
 | |
|                 content=PromptBuilder.parse_prompt(
 | |
|                     prompt=prompt + query_prompt,
 | |
|                     inputs={
 | |
|                         'query': query
 | |
|                     }
 | |
|                 )
 | |
|             )
 | |
| 
 | |
|             rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
 | |
| 
 | |
|             histories = self._get_history_messages_from_memory(
 | |
|                 memory=memory,
 | |
|                 max_token_limit=rest_tokens,
 | |
|                 ai_prefix=prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human',
 | |
|                 human_prefix=prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant'
 | |
|             )
 | |
|             prompt_template = PromptTemplateParser(template=prompt_rules['histories_prompt'])
 | |
|             histories_prompt_content = prompt_template.format({'histories': histories})
 | |
| 
 | |
|             prompt = ''
 | |
|             for order in prompt_rules['system_prompt_orders']:
 | |
|                 if order == 'context_prompt':
 | |
|                     prompt += context_prompt_content
 | |
|                 elif order == 'pre_prompt':
 | |
|                     prompt += (pre_prompt_content + '\n') if pre_prompt_content else ''
 | |
|                 elif order == 'histories_prompt':
 | |
|                     prompt += histories_prompt_content
 | |
| 
 | |
|         prompt_template = PromptTemplateParser(template=query_prompt)
 | |
|         query_prompt_content = prompt_template.format({'query': query})
 | |
| 
 | |
|         prompt += query_prompt_content
 | |
| 
 | |
|         prompt = re.sub(r'<\|.*?\|>', '', prompt)
 | |
| 
 | |
|         model_mode = ModelMode.value_of(model_config.mode)
 | |
| 
 | |
|         if model_mode == ModelMode.CHAT and files:
 | |
|             prompt_message_contents = [TextPromptMessageContent(data=prompt)]
 | |
|             for file in files:
 | |
|                 prompt_message_contents.append(file.prompt_message_content)
 | |
| 
 | |
|             prompt_message = UserPromptMessage(content=prompt_message_contents)
 | |
|         else:
 | |
|             if files:
 | |
|                 prompt_message_contents = [TextPromptMessageContent(data=prompt)]
 | |
|                 for file in files:
 | |
|                     prompt_message_contents.append(file.prompt_message_content)
 | |
| 
 | |
|                 prompt_message = UserPromptMessage(content=prompt_message_contents)
 | |
|             else:
 | |
|                 prompt_message = UserPromptMessage(content=prompt)
 | |
| 
 | |
|         return [prompt_message]
 | |
| 
 | |
|     def _set_context_variable(self, context: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
 | |
|         if '#context#' in prompt_template.variable_keys:
 | |
|             if context:
 | |
|                 prompt_inputs['#context#'] = context
 | |
|             else:
 | |
|                 prompt_inputs['#context#'] = ''
 | |
| 
 | |
|     def _set_query_variable(self, query: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
 | |
|         if '#query#' in prompt_template.variable_keys:
 | |
|             if query:
 | |
|                 prompt_inputs['#query#'] = query
 | |
|             else:
 | |
|                 prompt_inputs['#query#'] = ''
 | |
| 
 | |
|     def _set_histories_variable(self, memory: TokenBufferMemory,
 | |
|                                 raw_prompt: str,
 | |
|                                 role_prefix: AdvancedCompletionPromptTemplateEntity.RolePrefixEntity,
 | |
|                                 prompt_template: PromptTemplateParser,
 | |
|                                 prompt_inputs: dict,
 | |
|                                 model_config: ModelConfigEntity) -> None:
 | |
|         if '#histories#' in prompt_template.variable_keys:
 | |
|             if memory:
 | |
|                 tmp_human_message = UserPromptMessage(
 | |
|                     content=PromptBuilder.parse_prompt(
 | |
|                         prompt=raw_prompt,
 | |
|                         inputs={'#histories#': '', **prompt_inputs}
 | |
|                     )
 | |
|                 )
 | |
| 
 | |
|                 rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
 | |
| 
 | |
|                 histories = self._get_history_messages_from_memory(
 | |
|                     memory=memory,
 | |
|                     max_token_limit=rest_tokens,
 | |
|                     human_prefix=role_prefix.user,
 | |
|                     ai_prefix=role_prefix.assistant
 | |
|                 )
 | |
|                 prompt_inputs['#histories#'] = histories
 | |
|             else:
 | |
|                 prompt_inputs['#histories#'] = ''
 | |
| 
 | |
|     def _append_chat_histories(self, memory: TokenBufferMemory,
 | |
|                                prompt_messages: list[PromptMessage],
 | |
|                                model_config: ModelConfigEntity) -> None:
 | |
|         if memory:
 | |
|             rest_tokens = self._calculate_rest_token(prompt_messages, model_config)
 | |
|             histories = self._get_history_messages_list_from_memory(memory, rest_tokens)
 | |
|             prompt_messages.extend(histories)
 | |
| 
 | |
|     def _calculate_rest_token(self, prompt_messages: list[PromptMessage], model_config: ModelConfigEntity) -> int:
 | |
|         rest_tokens = 2000
 | |
| 
 | |
|         model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
 | |
|         if model_context_tokens:
 | |
|             model_type_instance = model_config.provider_model_bundle.model_type_instance
 | |
|             model_type_instance = cast(LargeLanguageModel, model_type_instance)
 | |
| 
 | |
|             curr_message_tokens = model_type_instance.get_num_tokens(
 | |
|                 model_config.model,
 | |
|                 model_config.credentials,
 | |
|                 prompt_messages
 | |
|             )
 | |
| 
 | |
|             max_tokens = 0
 | |
|             for parameter_rule in model_config.model_schema.parameter_rules:
 | |
|                 if (parameter_rule.name == 'max_tokens'
 | |
|                         or (parameter_rule.use_template and parameter_rule.use_template == 'max_tokens')):
 | |
|                     max_tokens = (model_config.parameters.get(parameter_rule.name)
 | |
|                                   or model_config.parameters.get(parameter_rule.use_template)) or 0
 | |
| 
 | |
|             rest_tokens = model_context_tokens - max_tokens - curr_message_tokens
 | |
|             rest_tokens = max(rest_tokens, 0)
 | |
| 
 | |
|         return rest_tokens
 | |
| 
 | |
|     def _format_prompt(self, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> str:
 | |
|         prompt = prompt_template.format(
 | |
|             prompt_inputs
 | |
|         )
 | |
| 
 | |
|         prompt = re.sub(r'<\|.*?\|>', '', prompt)
 | |
|         return prompt
 | |
| 
 | |
|     def _get_chat_app_completion_model_prompt_messages(self,
 | |
|                                                        prompt_template_entity: PromptTemplateEntity,
 | |
|                                                        inputs: dict,
 | |
|                                                        query: str,
 | |
|                                                        files: List[FileObj],
 | |
|                                                        context: Optional[str],
 | |
|                                                        memory: Optional[TokenBufferMemory],
 | |
|                                                        model_config: ModelConfigEntity) -> List[PromptMessage]:
 | |
| 
 | |
|         raw_prompt = prompt_template_entity.advanced_completion_prompt_template.prompt
 | |
|         role_prefix = prompt_template_entity.advanced_completion_prompt_template.role_prefix
 | |
| 
 | |
|         prompt_messages = []
 | |
| 
 | |
|         prompt_template = PromptTemplateParser(template=raw_prompt)
 | |
|         prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
 | |
| 
 | |
|         self._set_context_variable(context, prompt_template, prompt_inputs)
 | |
| 
 | |
|         self._set_query_variable(query, prompt_template, prompt_inputs)
 | |
| 
 | |
|         self._set_histories_variable(
 | |
|             memory=memory,
 | |
|             raw_prompt=raw_prompt,
 | |
|             role_prefix=role_prefix,
 | |
|             prompt_template=prompt_template,
 | |
|             prompt_inputs=prompt_inputs,
 | |
|             model_config=model_config
 | |
|         )
 | |
| 
 | |
|         prompt = self._format_prompt(prompt_template, prompt_inputs)
 | |
| 
 | |
|         if files:
 | |
|             prompt_message_contents = [TextPromptMessageContent(data=prompt)]
 | |
|             for file in files:
 | |
|                 prompt_message_contents.append(file.prompt_message_content)
 | |
| 
 | |
|             prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
 | |
|         else:
 | |
|             prompt_messages.append(UserPromptMessage(content=prompt))
 | |
| 
 | |
|         return prompt_messages
 | |
| 
 | |
|     def _get_chat_app_chat_model_prompt_messages(self,
 | |
|                                                  prompt_template_entity: PromptTemplateEntity,
 | |
|                                                  inputs: dict,
 | |
|                                                  query: str,
 | |
|                                                  files: List[FileObj],
 | |
|                                                  context: Optional[str],
 | |
|                                                  memory: Optional[TokenBufferMemory],
 | |
|                                                  model_config: ModelConfigEntity) -> List[PromptMessage]:
 | |
|         raw_prompt_list = prompt_template_entity.advanced_chat_prompt_template.messages
 | |
| 
 | |
|         prompt_messages = []
 | |
| 
 | |
|         for prompt_item in raw_prompt_list:
 | |
|             raw_prompt = prompt_item.text
 | |
| 
 | |
|             prompt_template = PromptTemplateParser(template=raw_prompt)
 | |
|             prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
 | |
| 
 | |
|             self._set_context_variable(context, prompt_template, prompt_inputs)
 | |
| 
 | |
|             prompt = self._format_prompt(prompt_template, prompt_inputs)
 | |
| 
 | |
|             if prompt_item.role == PromptMessageRole.USER:
 | |
|                 prompt_messages.append(UserPromptMessage(content=prompt))
 | |
|             elif prompt_item.role == PromptMessageRole.SYSTEM and prompt:
 | |
|                 prompt_messages.append(SystemPromptMessage(content=prompt))
 | |
|             elif prompt_item.role == PromptMessageRole.ASSISTANT:
 | |
|                 prompt_messages.append(AssistantPromptMessage(content=prompt))
 | |
| 
 | |
|         self._append_chat_histories(memory, prompt_messages, model_config)
 | |
| 
 | |
|         if files:
 | |
|             prompt_message_contents = [TextPromptMessageContent(data=query)]
 | |
|             for file in files:
 | |
|                 prompt_message_contents.append(file.prompt_message_content)
 | |
| 
 | |
|             prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
 | |
|         else:
 | |
|             prompt_messages.append(UserPromptMessage(content=query))
 | |
| 
 | |
|         return prompt_messages
 | |
| 
 | |
|     def _get_completion_app_completion_model_prompt_messages(self,
 | |
|                                                              prompt_template_entity: PromptTemplateEntity,
 | |
|                                                              inputs: dict,
 | |
|                                                              context: Optional[str]) -> List[PromptMessage]:
 | |
|         raw_prompt = prompt_template_entity.advanced_completion_prompt_template.prompt
 | |
| 
 | |
|         prompt_messages = []
 | |
| 
 | |
|         prompt_template = PromptTemplateParser(template=raw_prompt)
 | |
|         prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
 | |
| 
 | |
|         self._set_context_variable(context, prompt_template, prompt_inputs)
 | |
| 
 | |
|         prompt = self._format_prompt(prompt_template, prompt_inputs)
 | |
| 
 | |
|         prompt_messages.append(UserPromptMessage(content=prompt))
 | |
| 
 | |
|         return prompt_messages
 | |
| 
 | |
|     def _get_completion_app_chat_model_prompt_messages(self,
 | |
|                                                        prompt_template_entity: PromptTemplateEntity,
 | |
|                                                        inputs: dict,
 | |
|                                                        files: List[FileObj],
 | |
|                                                        context: Optional[str]) -> List[PromptMessage]:
 | |
|         raw_prompt_list = prompt_template_entity.advanced_chat_prompt_template.messages
 | |
| 
 | |
|         prompt_messages = []
 | |
| 
 | |
|         for prompt_item in raw_prompt_list:
 | |
|             raw_prompt = prompt_item.text
 | |
| 
 | |
|             prompt_template = PromptTemplateParser(template=raw_prompt)
 | |
|             prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
 | |
| 
 | |
|             self._set_context_variable(context, prompt_template, prompt_inputs)
 | |
| 
 | |
|             prompt = self._format_prompt(prompt_template, prompt_inputs)
 | |
| 
 | |
|             if prompt_item.role == PromptMessageRole.USER:
 | |
|                 prompt_messages.append(UserPromptMessage(content=prompt))
 | |
|             elif prompt_item.role == PromptMessageRole.SYSTEM and prompt:
 | |
|                 prompt_messages.append(SystemPromptMessage(content=prompt))
 | |
|             elif prompt_item.role == PromptMessageRole.ASSISTANT:
 | |
|                 prompt_messages.append(AssistantPromptMessage(content=prompt))
 | |
| 
 | |
|         for prompt_message in prompt_messages[::-1]:
 | |
|             if prompt_message.role == PromptMessageRole.USER:
 | |
|                 if files:
 | |
|                     prompt_message_contents = [TextPromptMessageContent(data=prompt_message.content)]
 | |
|                     for file in files:
 | |
|                         prompt_message_contents.append(file.prompt_message_content)
 | |
| 
 | |
|                     prompt_message.content = prompt_message_contents
 | |
|                 break
 | |
| 
 | |
|         return prompt_messages
 | 
