mirror of
				https://github.com/langgenius/dify.git
				synced 2025-11-04 12:53:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			119 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			119 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from typing import Optional
 | 
						|
 | 
						|
from core.index.vector_index.vector_index import VectorIndex
 | 
						|
from core.model_manager import ModelManager
 | 
						|
from core.model_runtime.entities.model_entities import ModelType
 | 
						|
from core.model_runtime.errors.invoke import InvokeAuthorizationError
 | 
						|
from core.rerank.rerank import RerankRunner
 | 
						|
from extensions.ext_database import db
 | 
						|
from flask import Flask, current_app
 | 
						|
from langchain.embeddings.base import Embeddings
 | 
						|
from models.dataset import Dataset
 | 
						|
 | 
						|
default_retrieval_model = {
 | 
						|
    'search_method': 'semantic_search',
 | 
						|
    'reranking_enable': False,
 | 
						|
    'reranking_model': {
 | 
						|
        'reranking_provider_name': '',
 | 
						|
        'reranking_model_name': ''
 | 
						|
    },
 | 
						|
    'top_k': 2,
 | 
						|
    'score_threshold_enabled': False
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
class RetrievalService:
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
 | 
						|
                         top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
 | 
						|
                         all_documents: list, search_method: str, embeddings: Embeddings):
 | 
						|
        with flask_app.app_context():
 | 
						|
            dataset = db.session.query(Dataset).filter(
 | 
						|
                Dataset.id == dataset_id
 | 
						|
            ).first()
 | 
						|
 | 
						|
            vector_index = VectorIndex(
 | 
						|
                dataset=dataset,
 | 
						|
                config=current_app.config,
 | 
						|
                embeddings=embeddings
 | 
						|
            )
 | 
						|
 | 
						|
            documents = vector_index.search(
 | 
						|
                query,
 | 
						|
                search_type='similarity_score_threshold',
 | 
						|
                search_kwargs={
 | 
						|
                    'k': top_k,
 | 
						|
                    'score_threshold': score_threshold,
 | 
						|
                    'filter': {
 | 
						|
                        'group_id': [dataset.id]
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            )
 | 
						|
 | 
						|
            if documents:
 | 
						|
                if reranking_model and search_method == 'semantic_search':
 | 
						|
                    try:
 | 
						|
                        model_manager = ModelManager()
 | 
						|
                        rerank_model_instance = model_manager.get_model_instance(
 | 
						|
                            tenant_id=dataset.tenant_id,
 | 
						|
                            provider=reranking_model['reranking_provider_name'],
 | 
						|
                            model_type=ModelType.RERANK,
 | 
						|
                            model=reranking_model['reranking_model_name']
 | 
						|
                        )
 | 
						|
                    except InvokeAuthorizationError:
 | 
						|
                        return
 | 
						|
 | 
						|
                    rerank_runner = RerankRunner(rerank_model_instance)
 | 
						|
                    all_documents.extend(rerank_runner.run(
 | 
						|
                        query=query,
 | 
						|
                        documents=documents,
 | 
						|
                        score_threshold=score_threshold,
 | 
						|
                        top_n=len(documents)
 | 
						|
                    ))
 | 
						|
                else:
 | 
						|
                    all_documents.extend(documents)
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
 | 
						|
                               top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
 | 
						|
                               all_documents: list, search_method: str, embeddings: Embeddings):
 | 
						|
        with flask_app.app_context():
 | 
						|
            dataset = db.session.query(Dataset).filter(
 | 
						|
                Dataset.id == dataset_id
 | 
						|
            ).first()
 | 
						|
 | 
						|
            vector_index = VectorIndex(
 | 
						|
                dataset=dataset,
 | 
						|
                config=current_app.config,
 | 
						|
                embeddings=embeddings
 | 
						|
            )
 | 
						|
 | 
						|
            documents = vector_index.search_by_full_text_index(
 | 
						|
                query,
 | 
						|
                search_type='similarity_score_threshold',
 | 
						|
                top_k=top_k
 | 
						|
            )
 | 
						|
            if documents:
 | 
						|
                if reranking_model and search_method == 'full_text_search':
 | 
						|
                    try:
 | 
						|
                        model_manager = ModelManager()
 | 
						|
                        rerank_model_instance = model_manager.get_model_instance(
 | 
						|
                            tenant_id=dataset.tenant_id,
 | 
						|
                            provider=reranking_model['reranking_provider_name'],
 | 
						|
                            model_type=ModelType.RERANK,
 | 
						|
                            model=reranking_model['reranking_model_name']
 | 
						|
                        )
 | 
						|
                    except InvokeAuthorizationError:
 | 
						|
                        return
 | 
						|
 | 
						|
                    rerank_runner = RerankRunner(rerank_model_instance)
 | 
						|
                    all_documents.extend(rerank_runner.run(
 | 
						|
                        query=query,
 | 
						|
                        documents=documents,
 | 
						|
                        score_threshold=score_threshold,
 | 
						|
                        top_n=len(documents)
 | 
						|
                    ))
 | 
						|
                else:
 | 
						|
                    all_documents.extend(documents)
 |