mirror of
				https://github.com/langgenius/dify.git
				synced 2025-11-04 12:53:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			68 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			68 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from typing import Optional
 | 
						|
 | 
						|
from core.rag.datasource.keyword.keyword_factory import Keyword
 | 
						|
from core.rag.datasource.vdb.vector_factory import Vector
 | 
						|
from core.rag.models.document import Document
 | 
						|
from models.dataset import Dataset, DocumentSegment
 | 
						|
 | 
						|
 | 
						|
class VectorService:
 | 
						|
    @classmethod
 | 
						|
    def create_segments_vector(
 | 
						|
        cls, keywords_list: Optional[list[list[str]]], segments: list[DocumentSegment], dataset: Dataset
 | 
						|
    ):
 | 
						|
        documents = []
 | 
						|
        for segment in segments:
 | 
						|
            document = Document(
 | 
						|
                page_content=segment.content,
 | 
						|
                metadata={
 | 
						|
                    "doc_id": segment.index_node_id,
 | 
						|
                    "doc_hash": segment.index_node_hash,
 | 
						|
                    "document_id": segment.document_id,
 | 
						|
                    "dataset_id": segment.dataset_id,
 | 
						|
                },
 | 
						|
            )
 | 
						|
            documents.append(document)
 | 
						|
        if dataset.indexing_technique == "high_quality":
 | 
						|
            # save vector index
 | 
						|
            vector = Vector(dataset=dataset)
 | 
						|
            vector.add_texts(documents, duplicate_check=True)
 | 
						|
 | 
						|
        # save keyword index
 | 
						|
        keyword = Keyword(dataset)
 | 
						|
 | 
						|
        if keywords_list and len(keywords_list) > 0:
 | 
						|
            keyword.add_texts(documents, keywords_list=keywords_list)
 | 
						|
        else:
 | 
						|
            keyword.add_texts(documents)
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def update_segment_vector(cls, keywords: Optional[list[str]], segment: DocumentSegment, dataset: Dataset):
 | 
						|
        # update segment index task
 | 
						|
 | 
						|
        # format new index
 | 
						|
        document = Document(
 | 
						|
            page_content=segment.content,
 | 
						|
            metadata={
 | 
						|
                "doc_id": segment.index_node_id,
 | 
						|
                "doc_hash": segment.index_node_hash,
 | 
						|
                "document_id": segment.document_id,
 | 
						|
                "dataset_id": segment.dataset_id,
 | 
						|
            },
 | 
						|
        )
 | 
						|
        if dataset.indexing_technique == "high_quality":
 | 
						|
            # update vector index
 | 
						|
            vector = Vector(dataset=dataset)
 | 
						|
            vector.delete_by_ids([segment.index_node_id])
 | 
						|
            vector.add_texts([document], duplicate_check=True)
 | 
						|
 | 
						|
        # update keyword index
 | 
						|
        keyword = Keyword(dataset)
 | 
						|
        keyword.delete_by_ids([segment.index_node_id])
 | 
						|
 | 
						|
        # save keyword index
 | 
						|
        if keywords and len(keywords) > 0:
 | 
						|
            keyword.add_texts([document], keywords_list=[keywords])
 | 
						|
        else:
 | 
						|
            keyword.add_texts([document])
 |