mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-31 19:03:09 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			105 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			105 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import datetime
 | |
| import logging
 | |
| import time
 | |
| 
 | |
| import click
 | |
| from celery import shared_task  # type: ignore
 | |
| 
 | |
| from configs import dify_config
 | |
| from core.indexing_runner import DocumentIsPausedError, IndexingRunner
 | |
| from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
 | |
| from extensions.ext_database import db
 | |
| from models.dataset import Dataset, Document, DocumentSegment
 | |
| from services.feature_service import FeatureService
 | |
| 
 | |
| 
 | |
| @shared_task(queue="dataset")
 | |
| def duplicate_document_indexing_task(dataset_id: str, document_ids: list):
 | |
|     """
 | |
|     Async process document
 | |
|     :param dataset_id:
 | |
|     :param document_ids:
 | |
| 
 | |
|     Usage: duplicate_document_indexing_task.delay(dataset_id, document_ids)
 | |
|     """
 | |
|     documents = []
 | |
|     start_at = time.perf_counter()
 | |
| 
 | |
|     dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 | |
|     if dataset is None:
 | |
|         logging.info(click.style("Dataset not found: {}".format(dataset_id), fg="red"))
 | |
|         db.session.close()
 | |
|         return
 | |
| 
 | |
|     # check document limit
 | |
|     features = FeatureService.get_features(dataset.tenant_id)
 | |
|     try:
 | |
|         if features.billing.enabled:
 | |
|             vector_space = features.vector_space
 | |
|             count = len(document_ids)
 | |
|             if features.billing.subscription.plan == "sandbox" and count > 1:
 | |
|                 raise ValueError("Your current plan does not support batch upload, please upgrade your plan.")
 | |
|             batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
 | |
|             if count > batch_upload_limit:
 | |
|                 raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
 | |
|             if 0 < vector_space.limit <= vector_space.size:
 | |
|                 raise ValueError(
 | |
|                     "Your total number of documents plus the number of uploads have over the limit of "
 | |
|                     "your subscription."
 | |
|                 )
 | |
|     except Exception as e:
 | |
|         for document_id in document_ids:
 | |
|             document = (
 | |
|                 db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
 | |
|             )
 | |
|             if document:
 | |
|                 document.indexing_status = "error"
 | |
|                 document.error = str(e)
 | |
|                 document.stopped_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
 | |
|                 db.session.add(document)
 | |
|         db.session.commit()
 | |
|         return
 | |
|     finally:
 | |
|         db.session.close()
 | |
| 
 | |
|     for document_id in document_ids:
 | |
|         logging.info(click.style("Start process document: {}".format(document_id), fg="green"))
 | |
| 
 | |
|         document = (
 | |
|             db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
 | |
|         )
 | |
| 
 | |
|         if document:
 | |
|             # clean old data
 | |
|             index_type = document.doc_form
 | |
|             index_processor = IndexProcessorFactory(index_type).init_index_processor()
 | |
| 
 | |
|             segments = db.session.query(DocumentSegment).filter(DocumentSegment.document_id == document_id).all()
 | |
|             if segments:
 | |
|                 index_node_ids = [segment.index_node_id for segment in segments]
 | |
| 
 | |
|                 # delete from vector index
 | |
|                 index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
 | |
| 
 | |
|                 for segment in segments:
 | |
|                     db.session.delete(segment)
 | |
|                 db.session.commit()
 | |
| 
 | |
|             document.indexing_status = "parsing"
 | |
|             document.processing_started_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
 | |
|             documents.append(document)
 | |
|             db.session.add(document)
 | |
|     db.session.commit()
 | |
| 
 | |
|     try:
 | |
|         indexing_runner = IndexingRunner()
 | |
|         indexing_runner.run(documents)
 | |
|         end_at = time.perf_counter()
 | |
|         logging.info(click.style("Processed dataset: {} latency: {}".format(dataset_id, end_at - start_at), fg="green"))
 | |
|     except DocumentIsPausedError as ex:
 | |
|         logging.info(click.style(str(ex), fg="yellow"))
 | |
|     except Exception:
 | |
|         logging.exception("duplicate_document_indexing_task failed, dataset_id: {}".format(dataset_id))
 | |
|     finally:
 | |
|         db.session.close()
 | 
