mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-31 10:53:02 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			91 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			91 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import logging
 | |
| import time
 | |
| 
 | |
| import click
 | |
| from celery import shared_task  # type: ignore
 | |
| from werkzeug.exceptions import NotFound
 | |
| 
 | |
| from core.rag.datasource.vdb.vector_factory import Vector
 | |
| from core.rag.models.document import Document
 | |
| from extensions.ext_database import db
 | |
| from extensions.ext_redis import redis_client
 | |
| from models.dataset import Dataset
 | |
| from models.model import App, AppAnnotationSetting, MessageAnnotation
 | |
| from services.dataset_service import DatasetCollectionBindingService
 | |
| 
 | |
| 
 | |
| @shared_task(queue="dataset")
 | |
| def batch_import_annotations_task(job_id: str, content_list: list[dict], app_id: str, tenant_id: str, user_id: str):
 | |
|     """
 | |
|     Add annotation to index.
 | |
|     :param job_id: job_id
 | |
|     :param content_list: content list
 | |
|     :param app_id: app id
 | |
|     :param tenant_id: tenant id
 | |
|     :param user_id: user_id
 | |
| 
 | |
|     """
 | |
|     logging.info(click.style("Start batch import annotation: {}".format(job_id), fg="green"))
 | |
|     start_at = time.perf_counter()
 | |
|     indexing_cache_key = "app_annotation_batch_import_{}".format(str(job_id))
 | |
|     # get app info
 | |
|     app = db.session.query(App).filter(App.id == app_id, App.tenant_id == tenant_id, App.status == "normal").first()
 | |
| 
 | |
|     if app:
 | |
|         try:
 | |
|             documents = []
 | |
|             for content in content_list:
 | |
|                 annotation = MessageAnnotation(
 | |
|                     app_id=app.id, content=content["answer"], question=content["question"], account_id=user_id
 | |
|                 )
 | |
|                 db.session.add(annotation)
 | |
|                 db.session.flush()
 | |
| 
 | |
|                 document = Document(
 | |
|                     page_content=content["question"],
 | |
|                     metadata={"annotation_id": annotation.id, "app_id": app_id, "doc_id": annotation.id},
 | |
|                 )
 | |
|                 documents.append(document)
 | |
|             # if annotation reply is enabled , batch add annotations' index
 | |
|             app_annotation_setting = (
 | |
|                 db.session.query(AppAnnotationSetting).filter(AppAnnotationSetting.app_id == app_id).first()
 | |
|             )
 | |
| 
 | |
|             if app_annotation_setting:
 | |
|                 dataset_collection_binding = (
 | |
|                     DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type(
 | |
|                         app_annotation_setting.collection_binding_id, "annotation"
 | |
|                     )
 | |
|                 )
 | |
|                 if not dataset_collection_binding:
 | |
|                     raise NotFound("App annotation setting not found")
 | |
|                 dataset = Dataset(
 | |
|                     id=app_id,
 | |
|                     tenant_id=tenant_id,
 | |
|                     indexing_technique="high_quality",
 | |
|                     embedding_model_provider=dataset_collection_binding.provider_name,
 | |
|                     embedding_model=dataset_collection_binding.model_name,
 | |
|                     collection_binding_id=dataset_collection_binding.id,
 | |
|                 )
 | |
| 
 | |
|                 vector = Vector(dataset, attributes=["doc_id", "annotation_id", "app_id"])
 | |
|                 vector.create(documents, duplicate_check=True)
 | |
| 
 | |
|             db.session.commit()
 | |
|             redis_client.setex(indexing_cache_key, 600, "completed")
 | |
|             end_at = time.perf_counter()
 | |
|             logging.info(
 | |
|                 click.style(
 | |
|                     "Build index successful for batch import annotation: {} latency: {}".format(
 | |
|                         job_id, end_at - start_at
 | |
|                     ),
 | |
|                     fg="green",
 | |
|                 )
 | |
|             )
 | |
|         except Exception as e:
 | |
|             db.session.rollback()
 | |
|             redis_client.setex(indexing_cache_key, 600, "error")
 | |
|             indexing_error_msg_key = "app_annotation_batch_import_error_msg_{}".format(str(job_id))
 | |
|             redis_client.setex(indexing_error_msg_key, 600, str(e))
 | |
|             logging.exception("Build index for batch import annotations failed")
 | 
