mirror of
				https://github.com/langgenius/dify.git
				synced 2025-11-03 20:33:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1026 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1026 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import logging
 | 
						|
from argparse import ArgumentTypeError
 | 
						|
from datetime import datetime, timezone
 | 
						|
 | 
						|
from flask import request
 | 
						|
from flask_login import current_user
 | 
						|
from flask_restful import Resource, fields, marshal, marshal_with, reqparse
 | 
						|
from sqlalchemy import asc, desc
 | 
						|
from transformers.hf_argparser import string_to_bool
 | 
						|
from werkzeug.exceptions import Forbidden, NotFound
 | 
						|
 | 
						|
import services
 | 
						|
from controllers.console import api
 | 
						|
from controllers.console.app.error import (
 | 
						|
    ProviderModelCurrentlyNotSupportError,
 | 
						|
    ProviderNotInitializeError,
 | 
						|
    ProviderQuotaExceededError,
 | 
						|
)
 | 
						|
from controllers.console.datasets.error import (
 | 
						|
    ArchivedDocumentImmutableError,
 | 
						|
    DocumentAlreadyFinishedError,
 | 
						|
    DocumentIndexingError,
 | 
						|
    IndexingEstimateError,
 | 
						|
    InvalidActionError,
 | 
						|
    InvalidMetadataError,
 | 
						|
)
 | 
						|
from controllers.console.setup import setup_required
 | 
						|
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
 | 
						|
from core.errors.error import (
 | 
						|
    LLMBadRequestError,
 | 
						|
    ModelCurrentlyNotSupportError,
 | 
						|
    ProviderTokenNotInitError,
 | 
						|
    QuotaExceededError,
 | 
						|
)
 | 
						|
from core.indexing_runner import IndexingRunner
 | 
						|
from core.model_manager import ModelManager
 | 
						|
from core.model_runtime.entities.model_entities import ModelType
 | 
						|
from core.model_runtime.errors.invoke import InvokeAuthorizationError
 | 
						|
from core.rag.extractor.entity.extract_setting import ExtractSetting
 | 
						|
from extensions.ext_database import db
 | 
						|
from extensions.ext_redis import redis_client
 | 
						|
from fields.document_fields import (
 | 
						|
    dataset_and_document_fields,
 | 
						|
    document_fields,
 | 
						|
    document_status_fields,
 | 
						|
    document_with_segments_fields,
 | 
						|
)
 | 
						|
from libs.login import login_required
 | 
						|
from models.dataset import Dataset, DatasetProcessRule, Document, DocumentSegment
 | 
						|
from models.model import UploadFile
 | 
						|
from services.dataset_service import DatasetService, DocumentService
 | 
						|
from tasks.add_document_to_index_task import add_document_to_index_task
 | 
						|
from tasks.remove_document_from_index_task import remove_document_from_index_task
 | 
						|
 | 
						|
 | 
						|
class DocumentResource(Resource):
 | 
						|
    def get_document(self, dataset_id: str, document_id: str) -> Document:
 | 
						|
        dataset = DatasetService.get_dataset(dataset_id)
 | 
						|
        if not dataset:
 | 
						|
            raise NotFound("Dataset not found.")
 | 
						|
 | 
						|
        try:
 | 
						|
            DatasetService.check_dataset_permission(dataset, current_user)
 | 
						|
        except services.errors.account.NoPermissionError as e:
 | 
						|
            raise Forbidden(str(e))
 | 
						|
 | 
						|
        document = DocumentService.get_document(dataset_id, document_id)
 | 
						|
 | 
						|
        if not document:
 | 
						|
            raise NotFound("Document not found.")
 | 
						|
 | 
						|
        if document.tenant_id != current_user.current_tenant_id:
 | 
						|
            raise Forbidden("No permission.")
 | 
						|
 | 
						|
        return document
 | 
						|
 | 
						|
    def get_batch_documents(self, dataset_id: str, batch: str) -> list[Document]:
 | 
						|
        dataset = DatasetService.get_dataset(dataset_id)
 | 
						|
        if not dataset:
 | 
						|
            raise NotFound("Dataset not found.")
 | 
						|
 | 
						|
        try:
 | 
						|
            DatasetService.check_dataset_permission(dataset, current_user)
 | 
						|
        except services.errors.account.NoPermissionError as e:
 | 
						|
            raise Forbidden(str(e))
 | 
						|
 | 
						|
        documents = DocumentService.get_batch_documents(dataset_id, batch)
 | 
						|
 | 
						|
        if not documents:
 | 
						|
            raise NotFound("Documents not found.")
 | 
						|
 | 
						|
        return documents
 | 
						|
 | 
						|
 | 
						|
class GetProcessRuleApi(Resource):
 | 
						|
    @setup_required
 | 
						|
    @login_required
 | 
						|
    @account_initialization_required
 | 
						|
    def get(self):
 | 
						|
        req_data = request.args
 | 
						|
 | 
						|
        document_id = req_data.get("document_id")
 | 
						|
 | 
						|
        # get default rules
 | 
						|
        mode = DocumentService.DEFAULT_RULES["mode"]
 | 
						|
        rules = DocumentService.DEFAULT_RULES["rules"]
 | 
						|
        if document_id:
 | 
						|
            # get the latest process rule
 | 
						|
            document = Document.query.get_or_404(document_id)
 | 
						|
 | 
						|
            dataset = DatasetService.get_dataset(document.dataset_id)
 | 
						|
 | 
						|
            if not dataset:
 | 
						|
                raise NotFound("Dataset not found.")
 | 
						|
 | 
						|
            try:
 | 
						|
                DatasetService.check_dataset_permission(dataset, current_user)
 | 
						|
            except services.errors.account.NoPermissionError as e:
 | 
						|
                raise Forbidden(str(e))
 | 
						|
 | 
						|
            # get the latest process rule
 | 
						|
            dataset_process_rule = (
 | 
						|
                db.session.query(DatasetProcessRule)
 | 
						|
                .filter(DatasetProcessRule.dataset_id == document.dataset_id)
 | 
						|
                .order_by(DatasetProcessRule.created_at.desc())
 | 
						|
                .limit(1)
 | 
						|
                .one_or_none()
 | 
						|
            )
 | 
						|
            if dataset_process_rule:
 | 
						|
                mode = dataset_process_rule.mode
 | 
						|
                rules = dataset_process_rule.rules_dict
 | 
						|
 | 
						|
        return {"mode": mode, "rules": rules}
 | 
						|
 | 
						|
 | 
						|
class DatasetDocumentListApi(Resource):
 | 
						|
    @setup_required
 | 
						|
    @login_required
 | 
						|
    @account_initialization_required
 | 
						|
    def get(self, dataset_id):
 | 
						|
        dataset_id = str(dataset_id)
 | 
						|
        page = request.args.get("page", default=1, type=int)
 | 
						|
        limit = request.args.get("limit", default=20, type=int)
 | 
						|
        search = request.args.get("keyword", default=None, type=str)
 | 
						|
        sort = request.args.get("sort", default="-created_at", type=str)
 | 
						|
        # "yes", "true", "t", "y", "1" convert to True, while others convert to False.
 | 
						|
        try:
 | 
						|
            fetch = string_to_bool(request.args.get("fetch", default="false"))
 | 
						|
        except (ArgumentTypeError, ValueError, Exception) as e:
 | 
						|
            fetch = False
 | 
						|
        dataset = DatasetService.get_dataset(dataset_id)
 | 
						|
        if not dataset:
 | 
						|
            raise NotFound("Dataset not found.")
 | 
						|
 | 
						|
        try:
 | 
						|
            DatasetService.check_dataset_permission(dataset, current_user)
 | 
						|
        except services.errors.account.NoPermissionError as e:
 | 
						|
            raise Forbidden(str(e))
 | 
						|
 | 
						|
        query = Document.query.filter_by(dataset_id=str(dataset_id), tenant_id=current_user.current_tenant_id)
 | 
						|
 | 
						|
        if search:
 | 
						|
            search = f"%{search}%"
 | 
						|
            query = query.filter(Document.name.like(search))
 | 
						|
 | 
						|
        if sort.startswith("-"):
 | 
						|
            sort_logic = desc
 | 
						|
            sort = sort[1:]
 | 
						|
        else:
 | 
						|
            sort_logic = asc
 | 
						|
 | 
						|
        if sort == "hit_count":
 | 
						|
            sub_query = (
 | 
						|
                db.select(DocumentSegment.document_id, db.func.sum(DocumentSegment.hit_count).label("total_hit_count"))
 | 
						|
                .group_by(DocumentSegment.document_id)
 | 
						|
                .subquery()
 | 
						|
            )
 | 
						|
 | 
						|
            query = query.outerjoin(sub_query, sub_query.c.document_id == Document.id).order_by(
 | 
						|
                sort_logic(db.func.coalesce(sub_query.c.total_hit_count, 0)),
 | 
						|
                sort_logic(Document.position),
 | 
						|
            )
 | 
						|
        elif sort == "created_at":
 | 
						|
            query = query.order_by(
 | 
						|
                sort_logic(Document.created_at),
 | 
						|
                sort_logic(Document.position),
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            query = query.order_by(
 | 
						|
                desc(Document.created_at),
 | 
						|
                desc(Document.position),
 | 
						|
            )
 | 
						|
 | 
						|
        paginated_documents = query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False)
 | 
						|
        documents = paginated_documents.items
 | 
						|
        if fetch:
 | 
						|
            for document in documents:
 | 
						|
                completed_segments = DocumentSegment.query.filter(
 | 
						|
                    DocumentSegment.completed_at.isnot(None),
 | 
						|
                    DocumentSegment.document_id == str(document.id),
 | 
						|
                    DocumentSegment.status != "re_segment",
 | 
						|
                ).count()
 | 
						|
                total_segments = DocumentSegment.query.filter(
 | 
						|
                    DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment"
 | 
						|
                ).count()
 | 
						|
                document.completed_segments = completed_segments
 | 
						|
                document.total_segments = total_segments
 | 
						|
            data = marshal(documents, document_with_segments_fields)
 | 
						|
        else:
 | 
						|
            data = marshal(documents, document_fields)
 | 
						|
        response = {
 | 
						|
            "data": data,
 | 
						|
            "has_more": len(documents) == limit,
 | 
						|
            "limit": limit,
 | 
						|
            "total": paginated_documents.total,
 | 
						|
            "page": page,
 | 
						|
        }
 | 
						|
 | 
						|
        return response
 | 
						|
 | 
						|
    documents_and_batch_fields = {"documents": fields.List(fields.Nested(document_fields)), "batch": fields.String}
 | 
						|
 | 
						|
    @setup_required
 | 
						|
    @login_required
 | 
						|
    @account_initialization_required
 | 
						|
    @marshal_with(documents_and_batch_fields)
 | 
						|
    @cloud_edition_billing_resource_check("vector_space")
 | 
						|
    def post(self, dataset_id):
 | 
						|
        dataset_id = str(dataset_id)
 | 
						|
 | 
						|
        dataset = DatasetService.get_dataset(dataset_id)
 | 
						|
 | 
						|
        if not dataset:
 | 
						|
            raise NotFound("Dataset not found.")
 | 
						|
 | 
						|
        # The role of the current user in the ta table must be admin, owner, or editor
 | 
						|
        if not current_user.is_dataset_editor:
 | 
						|
            raise Forbidden()
 | 
						|
 | 
						|
        try:
 | 
						|
            DatasetService.check_dataset_permission(dataset, current_user)
 | 
						|
        except services.errors.account.NoPermissionError as e:
 | 
						|
            raise Forbidden(str(e))
 | 
						|
 | 
						|
        parser = reqparse.RequestParser()
 | 
						|
        parser.add_argument(
 | 
						|
            "indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
 | 
						|
        )
 | 
						|
        parser.add_argument("data_source", type=dict, required=False, location="json")
 | 
						|
        parser.add_argument("process_rule", type=dict, required=False, location="json")
 | 
						|
        parser.add_argument("duplicate", type=bool, default=True, nullable=False, location="json")
 | 
						|
        parser.add_argument("original_document_id", type=str, required=False, location="json")
 | 
						|
        parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
 | 
						|
        parser.add_argument(
 | 
						|
            "doc_language", type=str, default="English", required=False, nullable=False, location="json"
 | 
						|
        )
 | 
						|
        parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
 | 
						|
        args = parser.parse_args()
 | 
						|
 | 
						|
        if not dataset.indexing_technique and not args["indexing_technique"]:
 | 
						|
            raise ValueError("indexing_technique is required.")
 | 
						|
 | 
						|
        # validate args
 | 
						|
        DocumentService.document_create_args_validate(args)
 | 
						|
 | 
						|
        try:
 | 
						|
            documents, batch = DocumentService.save_document_with_dataset_id(dataset, args, current_user)
 | 
						|
        except ProviderTokenNotInitError as ex:
 | 
						|
            raise ProviderNotInitializeError(ex.description)
 | 
						|
        except QuotaExceededError:
 | 
						|
            raise ProviderQuotaExceededError()
 | 
						|
        except ModelCurrentlyNotSupportError:
 | 
						|
            raise ProviderModelCurrentlyNotSupportError()
 | 
						|
 | 
						|
        return {"documents": documents, "batch": batch}
 | 
						|
 | 
						|
 | 
						|
class DatasetInitApi(Resource):
 | 
						|
    @setup_required
 | 
						|
    @login_required
 | 
						|
    @account_initialization_required
 | 
						|
    @marshal_with(dataset_and_document_fields)
 | 
						|
    @cloud_edition_billing_resource_check("vector_space")
 | 
						|
    def post(self):
 | 
						|
        # The role of the current user in the ta table must be admin, owner, or editor
 | 
						|
        if not current_user.is_editor:
 | 
						|
            raise Forbidden()
 | 
						|
 | 
						|
        parser = reqparse.RequestParser()
 | 
						|
        parser.add_argument(
 | 
						|
            "indexing_technique",
 | 
						|
            type=str,
 | 
						|
            choices=Dataset.INDEXING_TECHNIQUE_LIST,
 | 
						|
            required=True,
 | 
						|
            nullable=False,
 | 
						|
            location="json",
 | 
						|
        )
 | 
						|
        parser.add_argument("data_source", type=dict, required=True, nullable=True, location="json")
 | 
						|
        parser.add_argument("process_rule", type=dict, required=True, nullable=True, location="json")
 | 
						|
        parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
 | 
						|
        parser.add_argument(
 | 
						|
            "doc_language", type=str, default="English", required=False, nullable=False, location="json"
 | 
						|
        )
 | 
						|
        parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
 | 
						|
        parser.add_argument("embedding_model", type=str, required=False, nullable=True, location="json")
 | 
						|
        parser.add_argument("embedding_model_provider", type=str, required=False, nullable=True, location="json")
 | 
						|
        args = parser.parse_args()
 | 
						|
 | 
						|
        # The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
 | 
						|
        if not current_user.is_dataset_editor:
 | 
						|
            raise Forbidden()
 | 
						|
 | 
						|
        if args["indexing_technique"] == "high_quality":
 | 
						|
            if args["embedding_model"] is None or args["embedding_model_provider"] is None:
 | 
						|
                raise ValueError("embedding model and embedding model provider are required for high quality indexing.")
 | 
						|
            try:
 | 
						|
                model_manager = ModelManager()
 | 
						|
                model_manager.get_default_model_instance(
 | 
						|
                    tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING
 | 
						|
                )
 | 
						|
            except InvokeAuthorizationError:
 | 
						|
                raise ProviderNotInitializeError(
 | 
						|
                    "No Embedding Model available. Please configure a valid provider "
 | 
						|
                    "in the Settings -> Model Provider."
 | 
						|
                )
 | 
						|
            except ProviderTokenNotInitError as ex:
 | 
						|
                raise ProviderNotInitializeError(ex.description)
 | 
						|
 | 
						|
        # validate args
 | 
						|
        DocumentService.document_create_args_validate(args)
 | 
						|
 | 
						|
        try:
 | 
						|
            dataset, documents, batch = DocumentService.save_document_without_dataset_id(
 | 
						|
                tenant_id=current_user.current_tenant_id, document_data=args, account=current_user
 | 
						|
            )
 | 
						|
        except ProviderTokenNotInitError as ex:
 | 
						|
            raise ProviderNotInitializeError(ex.description)
 | 
						|
        except QuotaExceededError:
 | 
						|
            raise ProviderQuotaExceededError()
 | 
						|
        except ModelCurrentlyNotSupportError:
 | 
						|
            raise ProviderModelCurrentlyNotSupportError()
 | 
						|
 | 
						|
        response = {"dataset": dataset, "documents": documents, "batch": batch}
 | 
						|
 | 
						|
        return response
 | 
						|
 | 
						|
 | 
						|
class DocumentIndexingEstimateApi(DocumentResource):
 | 
						|
    @setup_required
 | 
						|
    @login_required
 | 
						|
    @account_initialization_required
 | 
						|
    def get(self, dataset_id, document_id):
 | 
						|
        dataset_id = str(dataset_id)
 | 
						|
        document_id = str(document_id)
 | 
						|
        document = self.get_document(dataset_id, document_id)
 | 
						|
 | 
						|
        if document.indexing_status in ["completed", "error"]:
 | 
						|
            raise DocumentAlreadyFinishedError()
 | 
						|
 | 
						|
        data_process_rule = document.dataset_process_rule
 | 
						|
        data_process_rule_dict = data_process_rule.to_dict()
 | 
						|
 | 
						|
        response = {"tokens": 0, "total_price": 0, "currency": "USD", "total_segments": 0, "preview": []}
 | 
						|
 | 
						|
        if document.data_source_type == "upload_file":
 | 
						|
            data_source_info = document.data_source_info_dict
 | 
						|
            if data_source_info and "upload_file_id" in data_source_info:
 | 
						|
                file_id = data_source_info["upload_file_id"]
 | 
						|
 | 
						|
                file = (
 | 
						|
                    db.session.query(UploadFile)
 | 
						|
                    .filter(UploadFile.tenant_id == document.tenant_id, UploadFile.id == file_id)
 | 
						|
                    .first()
 | 
						|
                )
 | 
						|
 | 
						|
                # raise error if file not found
 | 
						|
                if not file:
 | 
						|
                    raise NotFound("File not found.")
 | 
						|
 | 
						|
                extract_setting = ExtractSetting(
 | 
						|
                    datasource_type="upload_file", upload_file=file, document_model=document.doc_form
 | 
						|
                )
 | 
						|
 | 
						|
                indexing_runner = IndexingRunner()
 | 
						|
 | 
						|
                try:
 | 
						|
                    response = indexing_runner.indexing_estimate(
 | 
						|
                        current_user.current_tenant_id,
 | 
						|
                        [extract_setting],
 | 
						|
                        data_process_rule_dict,
 | 
						|
                        document.doc_form,
 | 
						|
                        "English",
 | 
						|
                        dataset_id,
 | 
						|
                    )
 | 
						|
                except LLMBadRequestError:
 | 
						|
                    raise ProviderNotInitializeError(
 | 
						|
                        "No Embedding Model available. Please configure a valid provider "
 | 
						|
                        "in the Settings -> Model Provider."
 | 
						|
                    )
 | 
						|
                except ProviderTokenNotInitError as ex:
 | 
						|
                    raise ProviderNotInitializeError(ex.description)
 | 
						|
                except Exception as e:
 | 
						|
                    raise IndexingEstimateError(str(e))
 | 
						|
 | 
						|
        return response
 | 
						|
 | 
						|
 | 
						|
class DocumentBatchIndexingEstimateApi(DocumentResource):
 | 
						|
    @setup_required
 | 
						|
    @login_required
 | 
						|
    @account_initialization_required
 | 
						|
    def get(self, dataset_id, batch):
 | 
						|
        dataset_id = str(dataset_id)
 | 
						|
        batch = str(batch)
 | 
						|
        documents = self.get_batch_documents(dataset_id, batch)
 | 
						|
        response = {"tokens": 0, "total_price": 0, "currency": "USD", "total_segments": 0, "preview": []}
 | 
						|
        if not documents:
 | 
						|
            return response
 | 
						|
        data_process_rule = documents[0].dataset_process_rule
 | 
						|
        data_process_rule_dict = data_process_rule.to_dict()
 | 
						|
        info_list = []
 | 
						|
        extract_settings = []
 | 
						|
        for document in documents:
 | 
						|
            if document.indexing_status in ["completed", "error"]:
 | 
						|
                raise DocumentAlreadyFinishedError()
 | 
						|
            data_source_info = document.data_source_info_dict
 | 
						|
            # format document files info
 | 
						|
            if data_source_info and "upload_file_id" in data_source_info:
 | 
						|
                file_id = data_source_info["upload_file_id"]
 | 
						|
                info_list.append(file_id)
 | 
						|
            # format document notion info
 | 
						|
            elif (
 | 
						|
                data_source_info and "notion_workspace_id" in data_source_info and "notion_page_id" in data_source_info
 | 
						|
            ):
 | 
						|
                pages = []
 | 
						|
                page = {"page_id": data_source_info["notion_page_id"], "type": data_source_info["type"]}
 | 
						|
                pages.append(page)
 | 
						|
                notion_info = {"workspace_id": data_source_info["notion_workspace_id"], "pages": pages}
 | 
						|
                info_list.append(notion_info)
 | 
						|
 | 
						|
            if document.data_source_type == "upload_file":
 | 
						|
                file_id = data_source_info["upload_file_id"]
 | 
						|
                file_detail = (
 | 
						|
                    db.session.query(UploadFile)
 | 
						|
                    .filter(UploadFile.tenant_id == current_user.current_tenant_id, UploadFile.id == file_id)
 | 
						|
                    .first()
 | 
						|
                )
 | 
						|
 | 
						|
                if file_detail is None:
 | 
						|
                    raise NotFound("File not found.")
 | 
						|
 | 
						|
                extract_setting = ExtractSetting(
 | 
						|
                    datasource_type="upload_file", upload_file=file_detail, document_model=document.doc_form
 | 
						|
                )
 | 
						|
                extract_settings.append(extract_setting)
 | 
						|
 | 
						|
            elif document.data_source_type == "notion_import":
 | 
						|
                extract_setting = ExtractSetting(
 | 
						|
                    datasource_type="notion_import",
 | 
						|
                    notion_info={
 | 
						|
                        "notion_workspace_id": data_source_info["notion_workspace_id"],
 | 
						|
                        "notion_obj_id": data_source_info["notion_page_id"],
 | 
						|
                        "notion_page_type": data_source_info["type"],
 | 
						|
                        "tenant_id": current_user.current_tenant_id,
 | 
						|
                    },
 | 
						|
                    document_model=document.doc_form,
 | 
						|
                )
 | 
						|
                extract_settings.append(extract_setting)
 | 
						|
            elif document.data_source_type == "website_crawl":
 | 
						|
                extract_setting = ExtractSetting(
 | 
						|
                    datasource_type="website_crawl",
 | 
						|
                    website_info={
 | 
						|
                        "provider": data_source_info["provider"],
 | 
						|
                        "job_id": data_source_info["job_id"],
 | 
						|
                        "url": data_source_info["url"],
 | 
						|
                        "tenant_id": current_user.current_tenant_id,
 | 
						|
                        "mode": data_source_info["mode"],
 | 
						|
                        "only_main_content": data_source_info["only_main_content"],
 | 
						|
                    },
 | 
						|
                    document_model=document.doc_form,
 | 
						|
                )
 | 
						|
                extract_settings.append(extract_setting)
 | 
						|
 | 
						|
            else:
 | 
						|
                raise ValueError("Data source type not support")
 | 
						|
            indexing_runner = IndexingRunner()
 | 
						|
            try:
 | 
						|
                response = indexing_runner.indexing_estimate(
 | 
						|
                    current_user.current_tenant_id,
 | 
						|
                    extract_settings,
 | 
						|
                    data_process_rule_dict,
 | 
						|
                    document.doc_form,
 | 
						|
                    "English",
 | 
						|
                    dataset_id,
 | 
						|
                )
 | 
						|
            except LLMBadRequestError:
 | 
						|
                raise ProviderNotInitializeError(
 | 
						|
                    "No Embedding Model available. Please configure a valid provider "
 | 
						|
                    "in the Settings -> Model Provider."
 | 
						|
                )
 | 
						|
            except ProviderTokenNotInitError as ex:
 | 
						|
                raise ProviderNotInitializeError(ex.description)
 | 
						|
            except Exception as e:
 | 
						|
                raise IndexingEstimateError(str(e))
 | 
						|
        return response
 | 
						|
 | 
						|
 | 
						|
class DocumentBatchIndexingStatusApi(DocumentResource):
 | 
						|
    @setup_required
 | 
						|
    @login_required
 | 
						|
    @account_initialization_required
 | 
						|
    def get(self, dataset_id, batch):
 | 
						|
        dataset_id = str(dataset_id)
 | 
						|
        batch = str(batch)
 | 
						|
        documents = self.get_batch_documents(dataset_id, batch)
 | 
						|
        documents_status = []
 | 
						|
        for document in documents:
 | 
						|
            completed_segments = DocumentSegment.query.filter(
 | 
						|
                DocumentSegment.completed_at.isnot(None),
 | 
						|
                DocumentSegment.document_id == str(document.id),
 | 
						|
                DocumentSegment.status != "re_segment",
 | 
						|
            ).count()
 | 
						|
            total_segments = DocumentSegment.query.filter(
 | 
						|
                DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment"
 | 
						|
            ).count()
 | 
						|
            document.completed_segments = completed_segments
 | 
						|
            document.total_segments = total_segments
 | 
						|
            if document.is_paused:
 | 
						|
                document.indexing_status = "paused"
 | 
						|
            documents_status.append(marshal(document, document_status_fields))
 | 
						|
        data = {"data": documents_status}
 | 
						|
        return data
 | 
						|
 | 
						|
 | 
						|
class DocumentIndexingStatusApi(DocumentResource):
 | 
						|
    @setup_required
 | 
						|
    @login_required
 | 
						|
    @account_initialization_required
 | 
						|
    def get(self, dataset_id, document_id):
 | 
						|
        dataset_id = str(dataset_id)
 | 
						|
        document_id = str(document_id)
 | 
						|
        document = self.get_document(dataset_id, document_id)
 | 
						|
 | 
						|
        completed_segments = DocumentSegment.query.filter(
 | 
						|
            DocumentSegment.completed_at.isnot(None),
 | 
						|
            DocumentSegment.document_id == str(document_id),
 | 
						|
            DocumentSegment.status != "re_segment",
 | 
						|
        ).count()
 | 
						|
        total_segments = DocumentSegment.query.filter(
 | 
						|
            DocumentSegment.document_id == str(document_id), DocumentSegment.status != "re_segment"
 | 
						|
        ).count()
 | 
						|
 | 
						|
        document.completed_segments = completed_segments
 | 
						|
        document.total_segments = total_segments
 | 
						|
        if document.is_paused:
 | 
						|
            document.indexing_status = "paused"
 | 
						|
        return marshal(document, document_status_fields)
 | 
						|
 | 
						|
 | 
						|
class DocumentDetailApi(DocumentResource):
 | 
						|
    METADATA_CHOICES = {"all", "only", "without"}
 | 
						|
 | 
						|
    @setup_required
 | 
						|
    @login_required
 | 
						|
    @account_initialization_required
 | 
						|
    def get(self, dataset_id, document_id):
 | 
						|
        dataset_id = str(dataset_id)
 | 
						|
        document_id = str(document_id)
 | 
						|
        document = self.get_document(dataset_id, document_id)
 | 
						|
 | 
						|
        metadata = request.args.get("metadata", "all")
 | 
						|
        if metadata not in self.METADATA_CHOICES:
 | 
						|
            raise InvalidMetadataError(f"Invalid metadata value: {metadata}")
 | 
						|
 | 
						|
        if metadata == "only":
 | 
						|
            response = {"id": document.id, "doc_type": document.doc_type, "doc_metadata": document.doc_metadata}
 | 
						|
        elif metadata == "without":
 | 
						|
            process_rules = DatasetService.get_process_rules(dataset_id)
 | 
						|
            data_source_info = document.data_source_detail_dict
 | 
						|
            response = {
 | 
						|
                "id": document.id,
 | 
						|
                "position": document.position,
 | 
						|
                "data_source_type": document.data_source_type,
 | 
						|
                "data_source_info": data_source_info,
 | 
						|
                "dataset_process_rule_id": document.dataset_process_rule_id,
 | 
						|
                "dataset_process_rule": process_rules,
 | 
						|
                "name": document.name,
 | 
						|
                "created_from": document.created_from,
 | 
						|
                "created_by": document.created_by,
 | 
						|
                "created_at": document.created_at.timestamp(),
 | 
						|
                "tokens": document.tokens,
 | 
						|
                "indexing_status": document.indexing_status,
 | 
						|
                "completed_at": int(document.completed_at.timestamp()) if document.completed_at else None,
 | 
						|
                "updated_at": int(document.updated_at.timestamp()) if document.updated_at else None,
 | 
						|
                "indexing_latency": document.indexing_latency,
 | 
						|
                "error": document.error,
 | 
						|
                "enabled": document.enabled,
 | 
						|
                "disabled_at": int(document.disabled_at.timestamp()) if document.disabled_at else None,
 | 
						|
                "disabled_by": document.disabled_by,
 | 
						|
                "archived": document.archived,
 | 
						|
                "segment_count": document.segment_count,
 | 
						|
                "average_segment_length": document.average_segment_length,
 | 
						|
                "hit_count": document.hit_count,
 | 
						|
                "display_status": document.display_status,
 | 
						|
                "doc_form": document.doc_form,
 | 
						|
                "doc_language": document.doc_language,
 | 
						|
            }
 | 
						|
        else:
 | 
						|
            process_rules = DatasetService.get_process_rules(dataset_id)
 | 
						|
            data_source_info = document.data_source_detail_dict
 | 
						|
            response = {
 | 
						|
                "id": document.id,
 | 
						|
                "position": document.position,
 | 
						|
                "data_source_type": document.data_source_type,
 | 
						|
                "data_source_info": data_source_info,
 | 
						|
                "dataset_process_rule_id": document.dataset_process_rule_id,
 | 
						|
                "dataset_process_rule": process_rules,
 | 
						|
                "name": document.name,
 | 
						|
                "created_from": document.created_from,
 | 
						|
                "created_by": document.created_by,
 | 
						|
                "created_at": document.created_at.timestamp(),
 | 
						|
                "tokens": document.tokens,
 | 
						|
                "indexing_status": document.indexing_status,
 | 
						|
                "completed_at": int(document.completed_at.timestamp()) if document.completed_at else None,
 | 
						|
                "updated_at": int(document.updated_at.timestamp()) if document.updated_at else None,
 | 
						|
                "indexing_latency": document.indexing_latency,
 | 
						|
                "error": document.error,
 | 
						|
                "enabled": document.enabled,
 | 
						|
                "disabled_at": int(document.disabled_at.timestamp()) if document.disabled_at else None,
 | 
						|
                "disabled_by": document.disabled_by,
 | 
						|
                "archived": document.archived,
 | 
						|
                "doc_type": document.doc_type,
 | 
						|
                "doc_metadata": document.doc_metadata,
 | 
						|
                "segment_count": document.segment_count,
 | 
						|
                "average_segment_length": document.average_segment_length,
 | 
						|
                "hit_count": document.hit_count,
 | 
						|
                "display_status": document.display_status,
 | 
						|
                "doc_form": document.doc_form,
 | 
						|
                "doc_language": document.doc_language,
 | 
						|
            }
 | 
						|
 | 
						|
        return response, 200
 | 
						|
 | 
						|
 | 
						|
class DocumentProcessingApi(DocumentResource):
 | 
						|
    @setup_required
 | 
						|
    @login_required
 | 
						|
    @account_initialization_required
 | 
						|
    def patch(self, dataset_id, document_id, action):
 | 
						|
        dataset_id = str(dataset_id)
 | 
						|
        document_id = str(document_id)
 | 
						|
        document = self.get_document(dataset_id, document_id)
 | 
						|
 | 
						|
        # The role of the current user in the ta table must be admin, owner, or editor
 | 
						|
        if not current_user.is_editor:
 | 
						|
            raise Forbidden()
 | 
						|
 | 
						|
        if action == "pause":
 | 
						|
            if document.indexing_status != "indexing":
 | 
						|
                raise InvalidActionError("Document not in indexing state.")
 | 
						|
 | 
						|
            document.paused_by = current_user.id
 | 
						|
            document.paused_at = datetime.now(timezone.utc).replace(tzinfo=None)
 | 
						|
            document.is_paused = True
 | 
						|
            db.session.commit()
 | 
						|
 | 
						|
        elif action == "resume":
 | 
						|
            if document.indexing_status not in ["paused", "error"]:
 | 
						|
                raise InvalidActionError("Document not in paused or error state.")
 | 
						|
 | 
						|
            document.paused_by = None
 | 
						|
            document.paused_at = None
 | 
						|
            document.is_paused = False
 | 
						|
            db.session.commit()
 | 
						|
        else:
 | 
						|
            raise InvalidActionError()
 | 
						|
 | 
						|
        return {"result": "success"}, 200
 | 
						|
 | 
						|
 | 
						|
class DocumentDeleteApi(DocumentResource):
 | 
						|
    @setup_required
 | 
						|
    @login_required
 | 
						|
    @account_initialization_required
 | 
						|
    def delete(self, dataset_id, document_id):
 | 
						|
        dataset_id = str(dataset_id)
 | 
						|
        document_id = str(document_id)
 | 
						|
        dataset = DatasetService.get_dataset(dataset_id)
 | 
						|
        if dataset is None:
 | 
						|
            raise NotFound("Dataset not found.")
 | 
						|
        # check user's model setting
 | 
						|
        DatasetService.check_dataset_model_setting(dataset)
 | 
						|
 | 
						|
        document = self.get_document(dataset_id, document_id)
 | 
						|
 | 
						|
        try:
 | 
						|
            DocumentService.delete_document(document)
 | 
						|
        except services.errors.document.DocumentIndexingError:
 | 
						|
            raise DocumentIndexingError("Cannot delete document during indexing.")
 | 
						|
 | 
						|
        return {"result": "success"}, 204
 | 
						|
 | 
						|
 | 
						|
class DocumentMetadataApi(DocumentResource):
 | 
						|
    @setup_required
 | 
						|
    @login_required
 | 
						|
    @account_initialization_required
 | 
						|
    def put(self, dataset_id, document_id):
 | 
						|
        dataset_id = str(dataset_id)
 | 
						|
        document_id = str(document_id)
 | 
						|
        document = self.get_document(dataset_id, document_id)
 | 
						|
 | 
						|
        req_data = request.get_json()
 | 
						|
 | 
						|
        doc_type = req_data.get("doc_type")
 | 
						|
        doc_metadata = req_data.get("doc_metadata")
 | 
						|
 | 
						|
        # The role of the current user in the ta table must be admin, owner, or editor
 | 
						|
        if not current_user.is_editor:
 | 
						|
            raise Forbidden()
 | 
						|
 | 
						|
        if doc_type is None or doc_metadata is None:
 | 
						|
            raise ValueError("Both doc_type and doc_metadata must be provided.")
 | 
						|
 | 
						|
        if doc_type not in DocumentService.DOCUMENT_METADATA_SCHEMA:
 | 
						|
            raise ValueError("Invalid doc_type.")
 | 
						|
 | 
						|
        if not isinstance(doc_metadata, dict):
 | 
						|
            raise ValueError("doc_metadata must be a dictionary.")
 | 
						|
 | 
						|
        metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[doc_type]
 | 
						|
 | 
						|
        document.doc_metadata = {}
 | 
						|
        if doc_type == "others":
 | 
						|
            document.doc_metadata = doc_metadata
 | 
						|
        else:
 | 
						|
            for key, value_type in metadata_schema.items():
 | 
						|
                value = doc_metadata.get(key)
 | 
						|
                if value is not None and isinstance(value, value_type):
 | 
						|
                    document.doc_metadata[key] = value
 | 
						|
 | 
						|
        document.doc_type = doc_type
 | 
						|
        document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
 | 
						|
        db.session.commit()
 | 
						|
 | 
						|
        return {"result": "success", "message": "Document metadata updated."}, 200
 | 
						|
 | 
						|
 | 
						|
class DocumentStatusApi(DocumentResource):
 | 
						|
    @setup_required
 | 
						|
    @login_required
 | 
						|
    @account_initialization_required
 | 
						|
    @cloud_edition_billing_resource_check("vector_space")
 | 
						|
    def patch(self, dataset_id, document_id, action):
 | 
						|
        dataset_id = str(dataset_id)
 | 
						|
        document_id = str(document_id)
 | 
						|
        dataset = DatasetService.get_dataset(dataset_id)
 | 
						|
        if dataset is None:
 | 
						|
            raise NotFound("Dataset not found.")
 | 
						|
 | 
						|
        # The role of the current user in the ta table must be admin, owner, or editor
 | 
						|
        if not current_user.is_dataset_editor:
 | 
						|
            raise Forbidden()
 | 
						|
 | 
						|
        # check user's model setting
 | 
						|
        DatasetService.check_dataset_model_setting(dataset)
 | 
						|
 | 
						|
        # check user's permission
 | 
						|
        DatasetService.check_dataset_permission(dataset, current_user)
 | 
						|
 | 
						|
        document = self.get_document(dataset_id, document_id)
 | 
						|
 | 
						|
        indexing_cache_key = "document_{}_indexing".format(document.id)
 | 
						|
        cache_result = redis_client.get(indexing_cache_key)
 | 
						|
        if cache_result is not None:
 | 
						|
            raise InvalidActionError("Document is being indexed, please try again later")
 | 
						|
 | 
						|
        if action == "enable":
 | 
						|
            if document.enabled:
 | 
						|
                raise InvalidActionError("Document already enabled.")
 | 
						|
 | 
						|
            document.enabled = True
 | 
						|
            document.disabled_at = None
 | 
						|
            document.disabled_by = None
 | 
						|
            document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
 | 
						|
            db.session.commit()
 | 
						|
 | 
						|
            # Set cache to prevent indexing the same document multiple times
 | 
						|
            redis_client.setex(indexing_cache_key, 600, 1)
 | 
						|
 | 
						|
            add_document_to_index_task.delay(document_id)
 | 
						|
 | 
						|
            return {"result": "success"}, 200
 | 
						|
 | 
						|
        elif action == "disable":
 | 
						|
            if not document.completed_at or document.indexing_status != "completed":
 | 
						|
                raise InvalidActionError("Document is not completed.")
 | 
						|
            if not document.enabled:
 | 
						|
                raise InvalidActionError("Document already disabled.")
 | 
						|
 | 
						|
            document.enabled = False
 | 
						|
            document.disabled_at = datetime.now(timezone.utc).replace(tzinfo=None)
 | 
						|
            document.disabled_by = current_user.id
 | 
						|
            document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
 | 
						|
            db.session.commit()
 | 
						|
 | 
						|
            # Set cache to prevent indexing the same document multiple times
 | 
						|
            redis_client.setex(indexing_cache_key, 600, 1)
 | 
						|
 | 
						|
            remove_document_from_index_task.delay(document_id)
 | 
						|
 | 
						|
            return {"result": "success"}, 200
 | 
						|
 | 
						|
        elif action == "archive":
 | 
						|
            if document.archived:
 | 
						|
                raise InvalidActionError("Document already archived.")
 | 
						|
 | 
						|
            document.archived = True
 | 
						|
            document.archived_at = datetime.now(timezone.utc).replace(tzinfo=None)
 | 
						|
            document.archived_by = current_user.id
 | 
						|
            document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
 | 
						|
            db.session.commit()
 | 
						|
 | 
						|
            if document.enabled:
 | 
						|
                # Set cache to prevent indexing the same document multiple times
 | 
						|
                redis_client.setex(indexing_cache_key, 600, 1)
 | 
						|
 | 
						|
                remove_document_from_index_task.delay(document_id)
 | 
						|
 | 
						|
            return {"result": "success"}, 200
 | 
						|
        elif action == "un_archive":
 | 
						|
            if not document.archived:
 | 
						|
                raise InvalidActionError("Document is not archived.")
 | 
						|
 | 
						|
            document.archived = False
 | 
						|
            document.archived_at = None
 | 
						|
            document.archived_by = None
 | 
						|
            document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
 | 
						|
            db.session.commit()
 | 
						|
 | 
						|
            # Set cache to prevent indexing the same document multiple times
 | 
						|
            redis_client.setex(indexing_cache_key, 600, 1)
 | 
						|
 | 
						|
            add_document_to_index_task.delay(document_id)
 | 
						|
 | 
						|
            return {"result": "success"}, 200
 | 
						|
        else:
 | 
						|
            raise InvalidActionError()
 | 
						|
 | 
						|
 | 
						|
class DocumentPauseApi(DocumentResource):
 | 
						|
    @setup_required
 | 
						|
    @login_required
 | 
						|
    @account_initialization_required
 | 
						|
    def patch(self, dataset_id, document_id):
 | 
						|
        """pause document."""
 | 
						|
        dataset_id = str(dataset_id)
 | 
						|
        document_id = str(document_id)
 | 
						|
 | 
						|
        dataset = DatasetService.get_dataset(dataset_id)
 | 
						|
        if not dataset:
 | 
						|
            raise NotFound("Dataset not found.")
 | 
						|
 | 
						|
        document = DocumentService.get_document(dataset.id, document_id)
 | 
						|
 | 
						|
        # 404 if document not found
 | 
						|
        if document is None:
 | 
						|
            raise NotFound("Document Not Exists.")
 | 
						|
 | 
						|
        # 403 if document is archived
 | 
						|
        if DocumentService.check_archived(document):
 | 
						|
            raise ArchivedDocumentImmutableError()
 | 
						|
 | 
						|
        try:
 | 
						|
            # pause document
 | 
						|
            DocumentService.pause_document(document)
 | 
						|
        except services.errors.document.DocumentIndexingError:
 | 
						|
            raise DocumentIndexingError("Cannot pause completed document.")
 | 
						|
 | 
						|
        return {"result": "success"}, 204
 | 
						|
 | 
						|
 | 
						|
class DocumentRecoverApi(DocumentResource):
 | 
						|
    @setup_required
 | 
						|
    @login_required
 | 
						|
    @account_initialization_required
 | 
						|
    def patch(self, dataset_id, document_id):
 | 
						|
        """recover document."""
 | 
						|
        dataset_id = str(dataset_id)
 | 
						|
        document_id = str(document_id)
 | 
						|
        dataset = DatasetService.get_dataset(dataset_id)
 | 
						|
        if not dataset:
 | 
						|
            raise NotFound("Dataset not found.")
 | 
						|
        document = DocumentService.get_document(dataset.id, document_id)
 | 
						|
 | 
						|
        # 404 if document not found
 | 
						|
        if document is None:
 | 
						|
            raise NotFound("Document Not Exists.")
 | 
						|
 | 
						|
        # 403 if document is archived
 | 
						|
        if DocumentService.check_archived(document):
 | 
						|
            raise ArchivedDocumentImmutableError()
 | 
						|
        try:
 | 
						|
            # pause document
 | 
						|
            DocumentService.recover_document(document)
 | 
						|
        except services.errors.document.DocumentIndexingError:
 | 
						|
            raise DocumentIndexingError("Document is not in paused status.")
 | 
						|
 | 
						|
        return {"result": "success"}, 204
 | 
						|
 | 
						|
 | 
						|
class DocumentRetryApi(DocumentResource):
 | 
						|
    @setup_required
 | 
						|
    @login_required
 | 
						|
    @account_initialization_required
 | 
						|
    def post(self, dataset_id):
 | 
						|
        """retry document."""
 | 
						|
 | 
						|
        parser = reqparse.RequestParser()
 | 
						|
        parser.add_argument("document_ids", type=list, required=True, nullable=False, location="json")
 | 
						|
        args = parser.parse_args()
 | 
						|
        dataset_id = str(dataset_id)
 | 
						|
        dataset = DatasetService.get_dataset(dataset_id)
 | 
						|
        retry_documents = []
 | 
						|
        if not dataset:
 | 
						|
            raise NotFound("Dataset not found.")
 | 
						|
        for document_id in args["document_ids"]:
 | 
						|
            try:
 | 
						|
                document_id = str(document_id)
 | 
						|
 | 
						|
                document = DocumentService.get_document(dataset.id, document_id)
 | 
						|
 | 
						|
                # 404 if document not found
 | 
						|
                if document is None:
 | 
						|
                    raise NotFound("Document Not Exists.")
 | 
						|
 | 
						|
                # 403 if document is archived
 | 
						|
                if DocumentService.check_archived(document):
 | 
						|
                    raise ArchivedDocumentImmutableError()
 | 
						|
 | 
						|
                # 400 if document is completed
 | 
						|
                if document.indexing_status == "completed":
 | 
						|
                    raise DocumentAlreadyFinishedError()
 | 
						|
                retry_documents.append(document)
 | 
						|
            except Exception as e:
 | 
						|
                logging.error(f"Document {document_id} retry failed: {str(e)}")
 | 
						|
                continue
 | 
						|
        # retry document
 | 
						|
        DocumentService.retry_document(dataset_id, retry_documents)
 | 
						|
 | 
						|
        return {"result": "success"}, 204
 | 
						|
 | 
						|
 | 
						|
class DocumentRenameApi(DocumentResource):
 | 
						|
    @setup_required
 | 
						|
    @login_required
 | 
						|
    @account_initialization_required
 | 
						|
    @marshal_with(document_fields)
 | 
						|
    def post(self, dataset_id, document_id):
 | 
						|
        # The role of the current user in the ta table must be admin, owner, editor, or dataset_operator
 | 
						|
        if not current_user.is_dataset_editor:
 | 
						|
            raise Forbidden()
 | 
						|
        dataset = DatasetService.get_dataset(dataset_id)
 | 
						|
        DatasetService.check_dataset_operator_permission(current_user, dataset)
 | 
						|
        parser = reqparse.RequestParser()
 | 
						|
        parser.add_argument("name", type=str, required=True, nullable=False, location="json")
 | 
						|
        args = parser.parse_args()
 | 
						|
 | 
						|
        try:
 | 
						|
            document = DocumentService.rename_document(dataset_id, document_id, args["name"])
 | 
						|
        except services.errors.document.DocumentIndexingError:
 | 
						|
            raise DocumentIndexingError("Cannot delete document during indexing.")
 | 
						|
 | 
						|
        return document
 | 
						|
 | 
						|
 | 
						|
class WebsiteDocumentSyncApi(DocumentResource):
 | 
						|
    @setup_required
 | 
						|
    @login_required
 | 
						|
    @account_initialization_required
 | 
						|
    def get(self, dataset_id, document_id):
 | 
						|
        """sync website document."""
 | 
						|
        dataset_id = str(dataset_id)
 | 
						|
        dataset = DatasetService.get_dataset(dataset_id)
 | 
						|
        if not dataset:
 | 
						|
            raise NotFound("Dataset not found.")
 | 
						|
        document_id = str(document_id)
 | 
						|
        document = DocumentService.get_document(dataset.id, document_id)
 | 
						|
        if not document:
 | 
						|
            raise NotFound("Document not found.")
 | 
						|
        if document.tenant_id != current_user.current_tenant_id:
 | 
						|
            raise Forbidden("No permission.")
 | 
						|
        if document.data_source_type != "website_crawl":
 | 
						|
            raise ValueError("Document is not a website document.")
 | 
						|
        # 403 if document is archived
 | 
						|
        if DocumentService.check_archived(document):
 | 
						|
            raise ArchivedDocumentImmutableError()
 | 
						|
        # sync document
 | 
						|
        DocumentService.sync_website_document(dataset_id, document)
 | 
						|
 | 
						|
        return {"result": "success"}, 200
 | 
						|
 | 
						|
 | 
						|
api.add_resource(GetProcessRuleApi, "/datasets/process-rule")
 | 
						|
api.add_resource(DatasetDocumentListApi, "/datasets/<uuid:dataset_id>/documents")
 | 
						|
api.add_resource(DatasetInitApi, "/datasets/init")
 | 
						|
api.add_resource(
 | 
						|
    DocumentIndexingEstimateApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/indexing-estimate"
 | 
						|
)
 | 
						|
api.add_resource(DocumentBatchIndexingEstimateApi, "/datasets/<uuid:dataset_id>/batch/<string:batch>/indexing-estimate")
 | 
						|
api.add_resource(DocumentBatchIndexingStatusApi, "/datasets/<uuid:dataset_id>/batch/<string:batch>/indexing-status")
 | 
						|
api.add_resource(DocumentIndexingStatusApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/indexing-status")
 | 
						|
api.add_resource(DocumentDetailApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
 | 
						|
api.add_resource(
 | 
						|
    DocumentProcessingApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/<string:action>"
 | 
						|
)
 | 
						|
api.add_resource(DocumentDeleteApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
 | 
						|
api.add_resource(DocumentMetadataApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/metadata")
 | 
						|
api.add_resource(DocumentStatusApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/status/<string:action>")
 | 
						|
api.add_resource(DocumentPauseApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/pause")
 | 
						|
api.add_resource(DocumentRecoverApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/resume")
 | 
						|
api.add_resource(DocumentRetryApi, "/datasets/<uuid:dataset_id>/retry")
 | 
						|
api.add_resource(DocumentRenameApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/rename")
 | 
						|
 | 
						|
api.add_resource(WebsiteDocumentSyncApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/website-sync")
 |