mirror of
				https://github.com/langgenius/dify.git
				synced 2025-11-03 20:33:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			449 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			449 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import json
 | 
						|
import logging
 | 
						|
from collections.abc import Generator
 | 
						|
from copy import deepcopy
 | 
						|
from typing import Any, Optional, Union
 | 
						|
 | 
						|
from core.agent.base_agent_runner import BaseAgentRunner
 | 
						|
from core.app.apps.base_app_queue_manager import PublishFrom
 | 
						|
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
 | 
						|
from core.file import file_manager
 | 
						|
from core.model_runtime.entities import (
 | 
						|
    AssistantPromptMessage,
 | 
						|
    LLMResult,
 | 
						|
    LLMResultChunk,
 | 
						|
    LLMResultChunkDelta,
 | 
						|
    LLMUsage,
 | 
						|
    PromptMessage,
 | 
						|
    PromptMessageContent,
 | 
						|
    PromptMessageContentType,
 | 
						|
    SystemPromptMessage,
 | 
						|
    TextPromptMessageContent,
 | 
						|
    ToolPromptMessage,
 | 
						|
    UserPromptMessage,
 | 
						|
)
 | 
						|
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
 | 
						|
from core.tools.entities.tool_entities import ToolInvokeMeta
 | 
						|
from core.tools.tool_engine import ToolEngine
 | 
						|
from models.model import Message
 | 
						|
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
 | 
						|
class FunctionCallAgentRunner(BaseAgentRunner):
 | 
						|
    def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
 | 
						|
        """
 | 
						|
        Run FunctionCall agent application
 | 
						|
        """
 | 
						|
        self.query = query
 | 
						|
        app_generate_entity = self.application_generate_entity
 | 
						|
 | 
						|
        app_config = self.app_config
 | 
						|
 | 
						|
        # convert tools into ModelRuntime Tool format
 | 
						|
        tool_instances, prompt_messages_tools = self._init_prompt_tools()
 | 
						|
 | 
						|
        iteration_step = 1
 | 
						|
        max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
 | 
						|
 | 
						|
        # continue to run until there is not any tool call
 | 
						|
        function_call_state = True
 | 
						|
        llm_usage = {"usage": None}
 | 
						|
        final_answer = ""
 | 
						|
 | 
						|
        # get tracing instance
 | 
						|
        trace_manager = app_generate_entity.trace_manager
 | 
						|
 | 
						|
        def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):
 | 
						|
            if not final_llm_usage_dict["usage"]:
 | 
						|
                final_llm_usage_dict["usage"] = usage
 | 
						|
            else:
 | 
						|
                llm_usage = final_llm_usage_dict["usage"]
 | 
						|
                llm_usage.prompt_tokens += usage.prompt_tokens
 | 
						|
                llm_usage.completion_tokens += usage.completion_tokens
 | 
						|
                llm_usage.prompt_price += usage.prompt_price
 | 
						|
                llm_usage.completion_price += usage.completion_price
 | 
						|
                llm_usage.total_price += usage.total_price
 | 
						|
 | 
						|
        model_instance = self.model_instance
 | 
						|
 | 
						|
        while function_call_state and iteration_step <= max_iteration_steps:
 | 
						|
            function_call_state = False
 | 
						|
 | 
						|
            if iteration_step == max_iteration_steps:
 | 
						|
                # the last iteration, remove all tools
 | 
						|
                prompt_messages_tools = []
 | 
						|
 | 
						|
            message_file_ids = []
 | 
						|
            agent_thought = self.create_agent_thought(
 | 
						|
                message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
 | 
						|
            )
 | 
						|
 | 
						|
            # recalc llm max tokens
 | 
						|
            prompt_messages = self._organize_prompt_messages()
 | 
						|
            self.recalc_llm_max_tokens(self.model_config, prompt_messages)
 | 
						|
            # invoke model
 | 
						|
            chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
 | 
						|
                prompt_messages=prompt_messages,
 | 
						|
                model_parameters=app_generate_entity.model_conf.parameters,
 | 
						|
                tools=prompt_messages_tools,
 | 
						|
                stop=app_generate_entity.model_conf.stop,
 | 
						|
                stream=self.stream_tool_call,
 | 
						|
                user=self.user_id,
 | 
						|
                callbacks=[],
 | 
						|
            )
 | 
						|
 | 
						|
            tool_calls: list[tuple[str, str, dict[str, Any]]] = []
 | 
						|
 | 
						|
            # save full response
 | 
						|
            response = ""
 | 
						|
 | 
						|
            # save tool call names and inputs
 | 
						|
            tool_call_names = ""
 | 
						|
            tool_call_inputs = ""
 | 
						|
 | 
						|
            current_llm_usage = None
 | 
						|
 | 
						|
            if self.stream_tool_call:
 | 
						|
                is_first_chunk = True
 | 
						|
                for chunk in chunks:
 | 
						|
                    if is_first_chunk:
 | 
						|
                        self.queue_manager.publish(
 | 
						|
                            QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 | 
						|
                        )
 | 
						|
                        is_first_chunk = False
 | 
						|
                    # check if there is any tool call
 | 
						|
                    if self.check_tool_calls(chunk):
 | 
						|
                        function_call_state = True
 | 
						|
                        tool_calls.extend(self.extract_tool_calls(chunk))
 | 
						|
                        tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
 | 
						|
                        try:
 | 
						|
                            tool_call_inputs = json.dumps(
 | 
						|
                                {tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
 | 
						|
                            )
 | 
						|
                        except json.JSONDecodeError as e:
 | 
						|
                            # ensure ascii to avoid encoding error
 | 
						|
                            tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
 | 
						|
 | 
						|
                    if chunk.delta.message and chunk.delta.message.content:
 | 
						|
                        if isinstance(chunk.delta.message.content, list):
 | 
						|
                            for content in chunk.delta.message.content:
 | 
						|
                                response += content.data
 | 
						|
                        else:
 | 
						|
                            response += chunk.delta.message.content
 | 
						|
 | 
						|
                    if chunk.delta.usage:
 | 
						|
                        increase_usage(llm_usage, chunk.delta.usage)
 | 
						|
                        current_llm_usage = chunk.delta.usage
 | 
						|
 | 
						|
                    yield chunk
 | 
						|
            else:
 | 
						|
                result: LLMResult = chunks
 | 
						|
                # check if there is any tool call
 | 
						|
                if self.check_blocking_tool_calls(result):
 | 
						|
                    function_call_state = True
 | 
						|
                    tool_calls.extend(self.extract_blocking_tool_calls(result))
 | 
						|
                    tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
 | 
						|
                    try:
 | 
						|
                        tool_call_inputs = json.dumps(
 | 
						|
                            {tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
 | 
						|
                        )
 | 
						|
                    except json.JSONDecodeError as e:
 | 
						|
                        # ensure ascii to avoid encoding error
 | 
						|
                        tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
 | 
						|
 | 
						|
                if result.usage:
 | 
						|
                    increase_usage(llm_usage, result.usage)
 | 
						|
                    current_llm_usage = result.usage
 | 
						|
 | 
						|
                if result.message and result.message.content:
 | 
						|
                    if isinstance(result.message.content, list):
 | 
						|
                        for content in result.message.content:
 | 
						|
                            response += content.data
 | 
						|
                    else:
 | 
						|
                        response += result.message.content
 | 
						|
 | 
						|
                if not result.message.content:
 | 
						|
                    result.message.content = ""
 | 
						|
 | 
						|
                self.queue_manager.publish(
 | 
						|
                    QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 | 
						|
                )
 | 
						|
 | 
						|
                yield LLMResultChunk(
 | 
						|
                    model=model_instance.model,
 | 
						|
                    prompt_messages=result.prompt_messages,
 | 
						|
                    system_fingerprint=result.system_fingerprint,
 | 
						|
                    delta=LLMResultChunkDelta(
 | 
						|
                        index=0,
 | 
						|
                        message=result.message,
 | 
						|
                        usage=result.usage,
 | 
						|
                    ),
 | 
						|
                )
 | 
						|
 | 
						|
            assistant_message = AssistantPromptMessage(content="", tool_calls=[])
 | 
						|
            if tool_calls:
 | 
						|
                assistant_message.tool_calls = [
 | 
						|
                    AssistantPromptMessage.ToolCall(
 | 
						|
                        id=tool_call[0],
 | 
						|
                        type="function",
 | 
						|
                        function=AssistantPromptMessage.ToolCall.ToolCallFunction(
 | 
						|
                            name=tool_call[1], arguments=json.dumps(tool_call[2], ensure_ascii=False)
 | 
						|
                        ),
 | 
						|
                    )
 | 
						|
                    for tool_call in tool_calls
 | 
						|
                ]
 | 
						|
            else:
 | 
						|
                assistant_message.content = response
 | 
						|
 | 
						|
            self._current_thoughts.append(assistant_message)
 | 
						|
 | 
						|
            # save thought
 | 
						|
            self.save_agent_thought(
 | 
						|
                agent_thought=agent_thought,
 | 
						|
                tool_name=tool_call_names,
 | 
						|
                tool_input=tool_call_inputs,
 | 
						|
                thought=response,
 | 
						|
                tool_invoke_meta=None,
 | 
						|
                observation=None,
 | 
						|
                answer=response,
 | 
						|
                messages_ids=[],
 | 
						|
                llm_usage=current_llm_usage,
 | 
						|
            )
 | 
						|
            self.queue_manager.publish(
 | 
						|
                QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 | 
						|
            )
 | 
						|
 | 
						|
            final_answer += response + "\n"
 | 
						|
 | 
						|
            # call tools
 | 
						|
            tool_responses = []
 | 
						|
            for tool_call_id, tool_call_name, tool_call_args in tool_calls:
 | 
						|
                tool_instance = tool_instances.get(tool_call_name)
 | 
						|
                if not tool_instance:
 | 
						|
                    tool_response = {
 | 
						|
                        "tool_call_id": tool_call_id,
 | 
						|
                        "tool_call_name": tool_call_name,
 | 
						|
                        "tool_response": f"there is not a tool named {tool_call_name}",
 | 
						|
                        "meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict(),
 | 
						|
                    }
 | 
						|
                else:
 | 
						|
                    # invoke tool
 | 
						|
                    tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
 | 
						|
                        tool=tool_instance,
 | 
						|
                        tool_parameters=tool_call_args,
 | 
						|
                        user_id=self.user_id,
 | 
						|
                        tenant_id=self.tenant_id,
 | 
						|
                        message=self.message,
 | 
						|
                        invoke_from=self.application_generate_entity.invoke_from,
 | 
						|
                        agent_tool_callback=self.agent_callback,
 | 
						|
                        trace_manager=trace_manager,
 | 
						|
                    )
 | 
						|
                    # publish files
 | 
						|
                    for message_file_id, save_as in message_files:
 | 
						|
                        if save_as:
 | 
						|
                            self.variables_pool.set_file(tool_name=tool_call_name, value=message_file_id, name=save_as)
 | 
						|
 | 
						|
                        # publish message file
 | 
						|
                        self.queue_manager.publish(
 | 
						|
                            QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
 | 
						|
                        )
 | 
						|
                        # add message file ids
 | 
						|
                        message_file_ids.append(message_file_id)
 | 
						|
 | 
						|
                    tool_response = {
 | 
						|
                        "tool_call_id": tool_call_id,
 | 
						|
                        "tool_call_name": tool_call_name,
 | 
						|
                        "tool_response": tool_invoke_response,
 | 
						|
                        "meta": tool_invoke_meta.to_dict(),
 | 
						|
                    }
 | 
						|
 | 
						|
                tool_responses.append(tool_response)
 | 
						|
                if tool_response["tool_response"] is not None:
 | 
						|
                    self._current_thoughts.append(
 | 
						|
                        ToolPromptMessage(
 | 
						|
                            content=tool_response["tool_response"],
 | 
						|
                            tool_call_id=tool_call_id,
 | 
						|
                            name=tool_call_name,
 | 
						|
                        )
 | 
						|
                    )
 | 
						|
 | 
						|
            if len(tool_responses) > 0:
 | 
						|
                # save agent thought
 | 
						|
                self.save_agent_thought(
 | 
						|
                    agent_thought=agent_thought,
 | 
						|
                    tool_name=None,
 | 
						|
                    tool_input=None,
 | 
						|
                    thought=None,
 | 
						|
                    tool_invoke_meta={
 | 
						|
                        tool_response["tool_call_name"]: tool_response["meta"] for tool_response in tool_responses
 | 
						|
                    },
 | 
						|
                    observation={
 | 
						|
                        tool_response["tool_call_name"]: tool_response["tool_response"]
 | 
						|
                        for tool_response in tool_responses
 | 
						|
                    },
 | 
						|
                    answer=None,
 | 
						|
                    messages_ids=message_file_ids,
 | 
						|
                )
 | 
						|
                self.queue_manager.publish(
 | 
						|
                    QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 | 
						|
                )
 | 
						|
 | 
						|
            # update prompt tool
 | 
						|
            for prompt_tool in prompt_messages_tools:
 | 
						|
                self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
 | 
						|
 | 
						|
            iteration_step += 1
 | 
						|
 | 
						|
        self.update_db_variables(self.variables_pool, self.db_variables_pool)
 | 
						|
        # publish end event
 | 
						|
        self.queue_manager.publish(
 | 
						|
            QueueMessageEndEvent(
 | 
						|
                llm_result=LLMResult(
 | 
						|
                    model=model_instance.model,
 | 
						|
                    prompt_messages=prompt_messages,
 | 
						|
                    message=AssistantPromptMessage(content=final_answer),
 | 
						|
                    usage=llm_usage["usage"] or LLMUsage.empty_usage(),
 | 
						|
                    system_fingerprint="",
 | 
						|
                )
 | 
						|
            ),
 | 
						|
            PublishFrom.APPLICATION_MANAGER,
 | 
						|
        )
 | 
						|
 | 
						|
    def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
 | 
						|
        """
 | 
						|
        Check if there is any tool call in llm result chunk
 | 
						|
        """
 | 
						|
        if llm_result_chunk.delta.message.tool_calls:
 | 
						|
            return True
 | 
						|
        return False
 | 
						|
 | 
						|
    def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
 | 
						|
        """
 | 
						|
        Check if there is any blocking tool call in llm result
 | 
						|
        """
 | 
						|
        if llm_result.message.tool_calls:
 | 
						|
            return True
 | 
						|
        return False
 | 
						|
 | 
						|
    def extract_tool_calls(
 | 
						|
        self, llm_result_chunk: LLMResultChunk
 | 
						|
    ) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:
 | 
						|
        """
 | 
						|
        Extract tool calls from llm result chunk
 | 
						|
 | 
						|
        Returns:
 | 
						|
            List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
 | 
						|
        """
 | 
						|
        tool_calls = []
 | 
						|
        for prompt_message in llm_result_chunk.delta.message.tool_calls:
 | 
						|
            args = {}
 | 
						|
            if prompt_message.function.arguments != "":
 | 
						|
                args = json.loads(prompt_message.function.arguments)
 | 
						|
 | 
						|
            tool_calls.append(
 | 
						|
                (
 | 
						|
                    prompt_message.id,
 | 
						|
                    prompt_message.function.name,
 | 
						|
                    args,
 | 
						|
                )
 | 
						|
            )
 | 
						|
 | 
						|
        return tool_calls
 | 
						|
 | 
						|
    def extract_blocking_tool_calls(self, llm_result: LLMResult) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:
 | 
						|
        """
 | 
						|
        Extract blocking tool calls from llm result
 | 
						|
 | 
						|
        Returns:
 | 
						|
            List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
 | 
						|
        """
 | 
						|
        tool_calls = []
 | 
						|
        for prompt_message in llm_result.message.tool_calls:
 | 
						|
            args = {}
 | 
						|
            if prompt_message.function.arguments != "":
 | 
						|
                args = json.loads(prompt_message.function.arguments)
 | 
						|
 | 
						|
            tool_calls.append(
 | 
						|
                (
 | 
						|
                    prompt_message.id,
 | 
						|
                    prompt_message.function.name,
 | 
						|
                    args,
 | 
						|
                )
 | 
						|
            )
 | 
						|
 | 
						|
        return tool_calls
 | 
						|
 | 
						|
    def _init_system_message(
 | 
						|
        self, prompt_template: str, prompt_messages: Optional[list[PromptMessage]] = None
 | 
						|
    ) -> list[PromptMessage]:
 | 
						|
        """
 | 
						|
        Initialize system message
 | 
						|
        """
 | 
						|
        if not prompt_messages and prompt_template:
 | 
						|
            return [
 | 
						|
                SystemPromptMessage(content=prompt_template),
 | 
						|
            ]
 | 
						|
 | 
						|
        if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:
 | 
						|
            prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
 | 
						|
 | 
						|
        return prompt_messages
 | 
						|
 | 
						|
    def _organize_user_query(self, query, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
 | 
						|
        """
 | 
						|
        Organize user query
 | 
						|
        """
 | 
						|
        if self.files:
 | 
						|
            prompt_message_contents: list[PromptMessageContent] = []
 | 
						|
            prompt_message_contents.append(TextPromptMessageContent(data=query))
 | 
						|
            for file_obj in self.files:
 | 
						|
                prompt_message_contents.append(file_manager.to_prompt_message_content(file_obj))
 | 
						|
 | 
						|
            prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
 | 
						|
        else:
 | 
						|
            prompt_messages.append(UserPromptMessage(content=query))
 | 
						|
 | 
						|
        return prompt_messages
 | 
						|
 | 
						|
    def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
 | 
						|
        """
 | 
						|
        As for now, gpt supports both fc and vision at the first iteration.
 | 
						|
        We need to remove the image messages from the prompt messages at the first iteration.
 | 
						|
        """
 | 
						|
        prompt_messages = deepcopy(prompt_messages)
 | 
						|
 | 
						|
        for prompt_message in prompt_messages:
 | 
						|
            if isinstance(prompt_message, UserPromptMessage):
 | 
						|
                if isinstance(prompt_message.content, list):
 | 
						|
                    prompt_message.content = "\n".join(
 | 
						|
                        [
 | 
						|
                            content.data
 | 
						|
                            if content.type == PromptMessageContentType.TEXT
 | 
						|
                            else "[image]"
 | 
						|
                            if content.type == PromptMessageContentType.IMAGE
 | 
						|
                            else "[file]"
 | 
						|
                            for content in prompt_message.content
 | 
						|
                        ]
 | 
						|
                    )
 | 
						|
 | 
						|
        return prompt_messages
 | 
						|
 | 
						|
    def _organize_prompt_messages(self):
 | 
						|
        prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
 | 
						|
        self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
 | 
						|
        query_prompt_messages = self._organize_user_query(self.query, [])
 | 
						|
 | 
						|
        self.history_prompt_messages = AgentHistoryPromptTransform(
 | 
						|
            model_config=self.model_config,
 | 
						|
            prompt_messages=[*query_prompt_messages, *self._current_thoughts],
 | 
						|
            history_messages=self.history_prompt_messages,
 | 
						|
            memory=self.memory,
 | 
						|
        ).get_prompt()
 | 
						|
 | 
						|
        prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
 | 
						|
        if len(self._current_thoughts) != 0:
 | 
						|
            # clear messages after the first iteration
 | 
						|
            prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
 | 
						|
        return prompt_messages
 |