mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-31 10:53:02 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			398 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			398 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import concurrent.futures
 | |
| from concurrent.futures import ThreadPoolExecutor
 | |
| from typing import Optional
 | |
| 
 | |
| from flask import Flask, current_app
 | |
| from sqlalchemy.orm import load_only
 | |
| 
 | |
| from configs import dify_config
 | |
| from core.rag.data_post_processor.data_post_processor import DataPostProcessor
 | |
| from core.rag.datasource.keyword.keyword_factory import Keyword
 | |
| from core.rag.datasource.vdb.vector_factory import Vector
 | |
| from core.rag.embedding.retrieval import RetrievalSegments
 | |
| from core.rag.index_processor.constant.index_type import IndexType
 | |
| from core.rag.models.document import Document
 | |
| from core.rag.rerank.rerank_type import RerankMode
 | |
| from core.rag.retrieval.retrieval_methods import RetrievalMethod
 | |
| from extensions.ext_database import db
 | |
| from models.dataset import ChildChunk, Dataset, DocumentSegment
 | |
| from models.dataset import Document as DatasetDocument
 | |
| from services.external_knowledge_service import ExternalDatasetService
 | |
| 
 | |
| default_retrieval_model = {
 | |
|     "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
 | |
|     "reranking_enable": False,
 | |
|     "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
 | |
|     "top_k": 2,
 | |
|     "score_threshold_enabled": False,
 | |
| }
 | |
| 
 | |
| 
 | |
| class RetrievalService:
 | |
|     # Cache precompiled regular expressions to avoid repeated compilation
 | |
|     @classmethod
 | |
|     def retrieve(
 | |
|         cls,
 | |
|         retrieval_method: str,
 | |
|         dataset_id: str,
 | |
|         query: str,
 | |
|         top_k: int,
 | |
|         score_threshold: Optional[float] = 0.0,
 | |
|         reranking_model: Optional[dict] = None,
 | |
|         reranking_mode: str = "reranking_model",
 | |
|         weights: Optional[dict] = None,
 | |
|         document_ids_filter: Optional[list[str]] = None,
 | |
|     ):
 | |
|         if not query:
 | |
|             return []
 | |
|         dataset = cls._get_dataset(dataset_id)
 | |
|         if not dataset:
 | |
|             return []
 | |
| 
 | |
|         all_documents: list[Document] = []
 | |
|         exceptions: list[str] = []
 | |
| 
 | |
|         # Optimize multithreading with thread pools
 | |
|         with ThreadPoolExecutor(max_workers=dify_config.RETRIEVAL_SERVICE_EXECUTORS) as executor:  # type: ignore
 | |
|             futures = []
 | |
|             if retrieval_method == "keyword_search":
 | |
|                 futures.append(
 | |
|                     executor.submit(
 | |
|                         cls.keyword_search,
 | |
|                         flask_app=current_app._get_current_object(),  # type: ignore
 | |
|                         dataset_id=dataset_id,
 | |
|                         query=query,
 | |
|                         top_k=top_k,
 | |
|                         all_documents=all_documents,
 | |
|                         exceptions=exceptions,
 | |
|                         document_ids_filter=document_ids_filter,
 | |
|                     )
 | |
|                 )
 | |
|             if RetrievalMethod.is_support_semantic_search(retrieval_method):
 | |
|                 futures.append(
 | |
|                     executor.submit(
 | |
|                         cls.embedding_search,
 | |
|                         flask_app=current_app._get_current_object(),  # type: ignore
 | |
|                         dataset_id=dataset_id,
 | |
|                         query=query,
 | |
|                         top_k=top_k,
 | |
|                         score_threshold=score_threshold,
 | |
|                         reranking_model=reranking_model,
 | |
|                         all_documents=all_documents,
 | |
|                         retrieval_method=retrieval_method,
 | |
|                         exceptions=exceptions,
 | |
|                         document_ids_filter=document_ids_filter,
 | |
|                     )
 | |
|                 )
 | |
|             if RetrievalMethod.is_support_fulltext_search(retrieval_method):
 | |
|                 futures.append(
 | |
|                     executor.submit(
 | |
|                         cls.full_text_index_search,
 | |
|                         flask_app=current_app._get_current_object(),  # type: ignore
 | |
|                         dataset_id=dataset_id,
 | |
|                         query=query,
 | |
|                         top_k=top_k,
 | |
|                         score_threshold=score_threshold,
 | |
|                         reranking_model=reranking_model,
 | |
|                         all_documents=all_documents,
 | |
|                         retrieval_method=retrieval_method,
 | |
|                         exceptions=exceptions,
 | |
|                         document_ids_filter=document_ids_filter,
 | |
|                     )
 | |
|                 )
 | |
|             concurrent.futures.wait(futures, timeout=30, return_when=concurrent.futures.ALL_COMPLETED)
 | |
| 
 | |
|         if exceptions:
 | |
|             raise ValueError(";\n".join(exceptions))
 | |
| 
 | |
|         if retrieval_method == RetrievalMethod.HYBRID_SEARCH.value:
 | |
|             data_post_processor = DataPostProcessor(
 | |
|                 str(dataset.tenant_id), reranking_mode, reranking_model, weights, False
 | |
|             )
 | |
|             all_documents = data_post_processor.invoke(
 | |
|                 query=query,
 | |
|                 documents=all_documents,
 | |
|                 score_threshold=score_threshold,
 | |
|                 top_n=top_k,
 | |
|             )
 | |
| 
 | |
|         return all_documents
 | |
| 
 | |
|     @classmethod
 | |
|     def external_retrieve(cls, dataset_id: str, query: str, external_retrieval_model: Optional[dict] = None):
 | |
|         dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 | |
|         if not dataset:
 | |
|             return []
 | |
|         all_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
 | |
|             dataset.tenant_id, dataset_id, query, external_retrieval_model or {}
 | |
|         )
 | |
|         return all_documents
 | |
| 
 | |
|     @classmethod
 | |
|     def _get_dataset(cls, dataset_id: str) -> Optional[Dataset]:
 | |
|         return db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 | |
| 
 | |
|     @classmethod
 | |
|     def keyword_search(
 | |
|         cls,
 | |
|         flask_app: Flask,
 | |
|         dataset_id: str,
 | |
|         query: str,
 | |
|         top_k: int,
 | |
|         all_documents: list,
 | |
|         exceptions: list,
 | |
|         document_ids_filter: Optional[list[str]] = None,
 | |
|     ):
 | |
|         with flask_app.app_context():
 | |
|             try:
 | |
|                 dataset = cls._get_dataset(dataset_id)
 | |
|                 if not dataset:
 | |
|                     raise ValueError("dataset not found")
 | |
| 
 | |
|                 keyword = Keyword(dataset=dataset)
 | |
| 
 | |
|                 documents = keyword.search(
 | |
|                     cls.escape_query_for_search(query), top_k=top_k, document_ids_filter=document_ids_filter
 | |
|                 )
 | |
|                 all_documents.extend(documents)
 | |
|             except Exception as e:
 | |
|                 exceptions.append(str(e))
 | |
| 
 | |
|     @classmethod
 | |
|     def embedding_search(
 | |
|         cls,
 | |
|         flask_app: Flask,
 | |
|         dataset_id: str,
 | |
|         query: str,
 | |
|         top_k: int,
 | |
|         score_threshold: Optional[float],
 | |
|         reranking_model: Optional[dict],
 | |
|         all_documents: list,
 | |
|         retrieval_method: str,
 | |
|         exceptions: list,
 | |
|         document_ids_filter: Optional[list[str]] = None,
 | |
|     ):
 | |
|         with flask_app.app_context():
 | |
|             try:
 | |
|                 dataset = cls._get_dataset(dataset_id)
 | |
|                 if not dataset:
 | |
|                     raise ValueError("dataset not found")
 | |
| 
 | |
|                 vector = Vector(dataset=dataset)
 | |
|                 documents = vector.search_by_vector(
 | |
|                     query,
 | |
|                     search_type="similarity_score_threshold",
 | |
|                     top_k=top_k,
 | |
|                     score_threshold=score_threshold,
 | |
|                     filter={"group_id": [dataset.id]},
 | |
|                     document_ids_filter=document_ids_filter,
 | |
|                 )
 | |
| 
 | |
|                 if documents:
 | |
|                     if (
 | |
|                         reranking_model
 | |
|                         and reranking_model.get("reranking_model_name")
 | |
|                         and reranking_model.get("reranking_provider_name")
 | |
|                         and retrieval_method == RetrievalMethod.SEMANTIC_SEARCH.value
 | |
|                     ):
 | |
|                         data_post_processor = DataPostProcessor(
 | |
|                             str(dataset.tenant_id), str(RerankMode.RERANKING_MODEL.value), reranking_model, None, False
 | |
|                         )
 | |
|                         all_documents.extend(
 | |
|                             data_post_processor.invoke(
 | |
|                                 query=query,
 | |
|                                 documents=documents,
 | |
|                                 score_threshold=score_threshold,
 | |
|                                 top_n=len(documents),
 | |
|                             )
 | |
|                         )
 | |
|                     else:
 | |
|                         all_documents.extend(documents)
 | |
|             except Exception as e:
 | |
|                 exceptions.append(str(e))
 | |
| 
 | |
|     @classmethod
 | |
|     def full_text_index_search(
 | |
|         cls,
 | |
|         flask_app: Flask,
 | |
|         dataset_id: str,
 | |
|         query: str,
 | |
|         top_k: int,
 | |
|         score_threshold: Optional[float],
 | |
|         reranking_model: Optional[dict],
 | |
|         all_documents: list,
 | |
|         retrieval_method: str,
 | |
|         exceptions: list,
 | |
|         document_ids_filter: Optional[list[str]] = None,
 | |
|     ):
 | |
|         with flask_app.app_context():
 | |
|             try:
 | |
|                 dataset = cls._get_dataset(dataset_id)
 | |
|                 if not dataset:
 | |
|                     raise ValueError("dataset not found")
 | |
| 
 | |
|                 vector_processor = Vector(dataset=dataset)
 | |
| 
 | |
|                 documents = vector_processor.search_by_full_text(
 | |
|                     cls.escape_query_for_search(query), top_k=top_k, document_ids_filter=document_ids_filter
 | |
|                 )
 | |
|                 if documents:
 | |
|                     if (
 | |
|                         reranking_model
 | |
|                         and reranking_model.get("reranking_model_name")
 | |
|                         and reranking_model.get("reranking_provider_name")
 | |
|                         and retrieval_method == RetrievalMethod.FULL_TEXT_SEARCH.value
 | |
|                     ):
 | |
|                         data_post_processor = DataPostProcessor(
 | |
|                             str(dataset.tenant_id), str(RerankMode.RERANKING_MODEL.value), reranking_model, None, False
 | |
|                         )
 | |
|                         all_documents.extend(
 | |
|                             data_post_processor.invoke(
 | |
|                                 query=query,
 | |
|                                 documents=documents,
 | |
|                                 score_threshold=score_threshold,
 | |
|                                 top_n=len(documents),
 | |
|                             )
 | |
|                         )
 | |
|                     else:
 | |
|                         all_documents.extend(documents)
 | |
|             except Exception as e:
 | |
|                 exceptions.append(str(e))
 | |
| 
 | |
|     @staticmethod
 | |
|     def escape_query_for_search(query: str) -> str:
 | |
|         return query.replace('"', '\\"')
 | |
| 
 | |
|     @classmethod
 | |
|     def format_retrieval_documents(cls, documents: list[Document]) -> list[RetrievalSegments]:
 | |
|         """Format retrieval documents with optimized batch processing"""
 | |
|         if not documents:
 | |
|             return []
 | |
| 
 | |
|         try:
 | |
|             # Collect document IDs
 | |
|             document_ids = {doc.metadata.get("document_id") for doc in documents if "document_id" in doc.metadata}
 | |
|             if not document_ids:
 | |
|                 return []
 | |
| 
 | |
|             # Batch query dataset documents
 | |
|             dataset_documents = {
 | |
|                 doc.id: doc
 | |
|                 for doc in db.session.query(DatasetDocument)
 | |
|                 .filter(DatasetDocument.id.in_(document_ids))
 | |
|                 .options(load_only(DatasetDocument.id, DatasetDocument.doc_form, DatasetDocument.dataset_id))
 | |
|                 .all()
 | |
|             }
 | |
| 
 | |
|             records = []
 | |
|             include_segment_ids = set()
 | |
|             segment_child_map = {}
 | |
| 
 | |
|             # Process documents
 | |
|             for document in documents:
 | |
|                 document_id = document.metadata.get("document_id")
 | |
|                 if document_id not in dataset_documents:
 | |
|                     continue
 | |
| 
 | |
|                 dataset_document = dataset_documents[document_id]
 | |
|                 if not dataset_document:
 | |
|                     continue
 | |
| 
 | |
|                 if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
 | |
|                     # Handle parent-child documents
 | |
|                     child_index_node_id = document.metadata.get("doc_id")
 | |
| 
 | |
|                     child_chunk = (
 | |
|                         db.session.query(ChildChunk).filter(ChildChunk.index_node_id == child_index_node_id).first()
 | |
|                     )
 | |
| 
 | |
|                     if not child_chunk:
 | |
|                         continue
 | |
| 
 | |
|                     segment = (
 | |
|                         db.session.query(DocumentSegment)
 | |
|                         .filter(
 | |
|                             DocumentSegment.dataset_id == dataset_document.dataset_id,
 | |
|                             DocumentSegment.enabled == True,
 | |
|                             DocumentSegment.status == "completed",
 | |
|                             DocumentSegment.id == child_chunk.segment_id,
 | |
|                         )
 | |
|                         .options(
 | |
|                             load_only(
 | |
|                                 DocumentSegment.id,
 | |
|                                 DocumentSegment.content,
 | |
|                                 DocumentSegment.answer,
 | |
|                             )
 | |
|                         )
 | |
|                         .first()
 | |
|                     )
 | |
| 
 | |
|                     if not segment:
 | |
|                         continue
 | |
| 
 | |
|                     if segment.id not in include_segment_ids:
 | |
|                         include_segment_ids.add(segment.id)
 | |
|                         child_chunk_detail = {
 | |
|                             "id": child_chunk.id,
 | |
|                             "content": child_chunk.content,
 | |
|                             "position": child_chunk.position,
 | |
|                             "score": document.metadata.get("score", 0.0),
 | |
|                         }
 | |
|                         map_detail = {
 | |
|                             "max_score": document.metadata.get("score", 0.0),
 | |
|                             "child_chunks": [child_chunk_detail],
 | |
|                         }
 | |
|                         segment_child_map[segment.id] = map_detail
 | |
|                         record = {
 | |
|                             "segment": segment,
 | |
|                         }
 | |
|                         records.append(record)
 | |
|                     else:
 | |
|                         child_chunk_detail = {
 | |
|                             "id": child_chunk.id,
 | |
|                             "content": child_chunk.content,
 | |
|                             "position": child_chunk.position,
 | |
|                             "score": document.metadata.get("score", 0.0),
 | |
|                         }
 | |
|                         segment_child_map[segment.id]["child_chunks"].append(child_chunk_detail)
 | |
|                         segment_child_map[segment.id]["max_score"] = max(
 | |
|                             segment_child_map[segment.id]["max_score"], document.metadata.get("score", 0.0)
 | |
|                         )
 | |
|                 else:
 | |
|                     # Handle normal documents
 | |
|                     index_node_id = document.metadata.get("doc_id")
 | |
|                     if not index_node_id:
 | |
|                         continue
 | |
| 
 | |
|                     segment = (
 | |
|                         db.session.query(DocumentSegment)
 | |
|                         .filter(
 | |
|                             DocumentSegment.dataset_id == dataset_document.dataset_id,
 | |
|                             DocumentSegment.enabled == True,
 | |
|                             DocumentSegment.status == "completed",
 | |
|                             DocumentSegment.index_node_id == index_node_id,
 | |
|                         )
 | |
|                         .first()
 | |
|                     )
 | |
| 
 | |
|                     if not segment:
 | |
|                         continue
 | |
| 
 | |
|                     include_segment_ids.add(segment.id)
 | |
|                     record = {
 | |
|                         "segment": segment,
 | |
|                         "score": document.metadata.get("score"),  # type: ignore
 | |
|                     }
 | |
|                     records.append(record)
 | |
| 
 | |
|             # Add child chunks information to records
 | |
|             for record in records:
 | |
|                 if record["segment"].id in segment_child_map:
 | |
|                     record["child_chunks"] = segment_child_map[record["segment"].id].get("child_chunks")  # type: ignore
 | |
|                     record["score"] = segment_child_map[record["segment"].id]["max_score"]
 | |
| 
 | |
|             return [RetrievalSegments(**record) for record in records]
 | |
|         except Exception as e:
 | |
|             db.session.rollback()
 | |
|             raise e
 | 
