mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-31 02:42:59 +00:00 
			
		
		
		
	 a1158cc946
			
		
	
	
		a1158cc946
		
			
		
	
	
	
	
		
			
			Co-authored-by: 朱庆超 <zhuqingchao@xiaomi.com> Co-authored-by: crazywoola <427733928@qq.com>
		
			
				
	
	
		
			464 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			464 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import json
 | |
| import logging
 | |
| from collections.abc import Generator
 | |
| from copy import deepcopy
 | |
| from typing import Any, Optional, Union
 | |
| 
 | |
| from core.agent.base_agent_runner import BaseAgentRunner
 | |
| from core.app.apps.base_app_queue_manager import PublishFrom
 | |
| from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
 | |
| from core.file import file_manager
 | |
| from core.model_runtime.entities import (
 | |
|     AssistantPromptMessage,
 | |
|     LLMResult,
 | |
|     LLMResultChunk,
 | |
|     LLMResultChunkDelta,
 | |
|     LLMUsage,
 | |
|     PromptMessage,
 | |
|     PromptMessageContentType,
 | |
|     SystemPromptMessage,
 | |
|     TextPromptMessageContent,
 | |
|     ToolPromptMessage,
 | |
|     UserPromptMessage,
 | |
| )
 | |
| from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
 | |
| from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
 | |
| from core.tools.entities.tool_entities import ToolInvokeMeta
 | |
| from core.tools.tool_engine import ToolEngine
 | |
| from models.model import Message
 | |
| 
 | |
| logger = logging.getLogger(__name__)
 | |
| 
 | |
| 
 | |
| class FunctionCallAgentRunner(BaseAgentRunner):
 | |
|     def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
 | |
|         """
 | |
|         Run FunctionCall agent application
 | |
|         """
 | |
|         self.query = query
 | |
|         app_generate_entity = self.application_generate_entity
 | |
| 
 | |
|         app_config = self.app_config
 | |
|         assert app_config is not None, "app_config is required"
 | |
|         assert app_config.agent is not None, "app_config.agent is required"
 | |
| 
 | |
|         # convert tools into ModelRuntime Tool format
 | |
|         tool_instances, prompt_messages_tools = self._init_prompt_tools()
 | |
| 
 | |
|         assert app_config.agent
 | |
| 
 | |
|         iteration_step = 1
 | |
|         max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
 | |
| 
 | |
|         # continue to run until there is not any tool call
 | |
|         function_call_state = True
 | |
|         llm_usage: dict[str, Optional[LLMUsage]] = {"usage": None}
 | |
|         final_answer = ""
 | |
| 
 | |
|         # get tracing instance
 | |
|         trace_manager = app_generate_entity.trace_manager
 | |
| 
 | |
|         def increase_usage(final_llm_usage_dict: dict[str, Optional[LLMUsage]], usage: LLMUsage):
 | |
|             if not final_llm_usage_dict["usage"]:
 | |
|                 final_llm_usage_dict["usage"] = usage
 | |
|             else:
 | |
|                 llm_usage = final_llm_usage_dict["usage"]
 | |
|                 llm_usage.prompt_tokens += usage.prompt_tokens
 | |
|                 llm_usage.completion_tokens += usage.completion_tokens
 | |
|                 llm_usage.prompt_price += usage.prompt_price
 | |
|                 llm_usage.completion_price += usage.completion_price
 | |
|                 llm_usage.total_price += usage.total_price
 | |
| 
 | |
|         model_instance = self.model_instance
 | |
| 
 | |
|         while function_call_state and iteration_step <= max_iteration_steps:
 | |
|             function_call_state = False
 | |
| 
 | |
|             if iteration_step == max_iteration_steps:
 | |
|                 # the last iteration, remove all tools
 | |
|                 prompt_messages_tools = []
 | |
| 
 | |
|             message_file_ids: list[str] = []
 | |
|             agent_thought = self.create_agent_thought(
 | |
|                 message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
 | |
|             )
 | |
| 
 | |
|             # recalc llm max tokens
 | |
|             prompt_messages = self._organize_prompt_messages()
 | |
|             self.recalc_llm_max_tokens(self.model_config, prompt_messages)
 | |
|             # invoke model
 | |
|             chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
 | |
|                 prompt_messages=prompt_messages,
 | |
|                 model_parameters=app_generate_entity.model_conf.parameters,
 | |
|                 tools=prompt_messages_tools,
 | |
|                 stop=app_generate_entity.model_conf.stop,
 | |
|                 stream=self.stream_tool_call,
 | |
|                 user=self.user_id,
 | |
|                 callbacks=[],
 | |
|             )
 | |
| 
 | |
|             tool_calls: list[tuple[str, str, dict[str, Any]]] = []
 | |
| 
 | |
|             # save full response
 | |
|             response = ""
 | |
| 
 | |
|             # save tool call names and inputs
 | |
|             tool_call_names = ""
 | |
|             tool_call_inputs = ""
 | |
| 
 | |
|             current_llm_usage = None
 | |
| 
 | |
|             if isinstance(chunks, Generator):
 | |
|                 is_first_chunk = True
 | |
|                 for chunk in chunks:
 | |
|                     if is_first_chunk:
 | |
|                         self.queue_manager.publish(
 | |
|                             QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 | |
|                         )
 | |
|                         is_first_chunk = False
 | |
|                     # check if there is any tool call
 | |
|                     if self.check_tool_calls(chunk):
 | |
|                         function_call_state = True
 | |
|                         tool_calls.extend(self.extract_tool_calls(chunk) or [])
 | |
|                         tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
 | |
|                         try:
 | |
|                             tool_call_inputs = json.dumps(
 | |
|                                 {tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
 | |
|                             )
 | |
|                         except json.JSONDecodeError:
 | |
|                             # ensure ascii to avoid encoding error
 | |
|                             tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
 | |
| 
 | |
|                     if chunk.delta.message and chunk.delta.message.content:
 | |
|                         if isinstance(chunk.delta.message.content, list):
 | |
|                             for content in chunk.delta.message.content:
 | |
|                                 response += content.data
 | |
|                         else:
 | |
|                             response += str(chunk.delta.message.content)
 | |
| 
 | |
|                     if chunk.delta.usage:
 | |
|                         increase_usage(llm_usage, chunk.delta.usage)
 | |
|                         current_llm_usage = chunk.delta.usage
 | |
| 
 | |
|                     yield chunk
 | |
|             else:
 | |
|                 result = chunks
 | |
|                 # check if there is any tool call
 | |
|                 if self.check_blocking_tool_calls(result):
 | |
|                     function_call_state = True
 | |
|                     tool_calls.extend(self.extract_blocking_tool_calls(result) or [])
 | |
|                     tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
 | |
|                     try:
 | |
|                         tool_call_inputs = json.dumps(
 | |
|                             {tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
 | |
|                         )
 | |
|                     except json.JSONDecodeError:
 | |
|                         # ensure ascii to avoid encoding error
 | |
|                         tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
 | |
| 
 | |
|                 if result.usage:
 | |
|                     increase_usage(llm_usage, result.usage)
 | |
|                     current_llm_usage = result.usage
 | |
| 
 | |
|                 if result.message and result.message.content:
 | |
|                     if isinstance(result.message.content, list):
 | |
|                         for content in result.message.content:
 | |
|                             response += content.data
 | |
|                     else:
 | |
|                         response += str(result.message.content)
 | |
| 
 | |
|                 if not result.message.content:
 | |
|                     result.message.content = ""
 | |
| 
 | |
|                 self.queue_manager.publish(
 | |
|                     QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 | |
|                 )
 | |
| 
 | |
|                 yield LLMResultChunk(
 | |
|                     model=model_instance.model,
 | |
|                     prompt_messages=result.prompt_messages,
 | |
|                     system_fingerprint=result.system_fingerprint,
 | |
|                     delta=LLMResultChunkDelta(
 | |
|                         index=0,
 | |
|                         message=result.message,
 | |
|                         usage=result.usage,
 | |
|                     ),
 | |
|                 )
 | |
| 
 | |
|             assistant_message = AssistantPromptMessage(content="", tool_calls=[])
 | |
|             if tool_calls:
 | |
|                 assistant_message.tool_calls = [
 | |
|                     AssistantPromptMessage.ToolCall(
 | |
|                         id=tool_call[0],
 | |
|                         type="function",
 | |
|                         function=AssistantPromptMessage.ToolCall.ToolCallFunction(
 | |
|                             name=tool_call[1], arguments=json.dumps(tool_call[2], ensure_ascii=False)
 | |
|                         ),
 | |
|                     )
 | |
|                     for tool_call in tool_calls
 | |
|                 ]
 | |
|             else:
 | |
|                 assistant_message.content = response
 | |
| 
 | |
|             self._current_thoughts.append(assistant_message)
 | |
| 
 | |
|             # save thought
 | |
|             self.save_agent_thought(
 | |
|                 agent_thought=agent_thought,
 | |
|                 tool_name=tool_call_names,
 | |
|                 tool_input=tool_call_inputs,
 | |
|                 thought=response,
 | |
|                 tool_invoke_meta=None,
 | |
|                 observation=None,
 | |
|                 answer=response,
 | |
|                 messages_ids=[],
 | |
|                 llm_usage=current_llm_usage,
 | |
|             )
 | |
|             self.queue_manager.publish(
 | |
|                 QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 | |
|             )
 | |
| 
 | |
|             final_answer += response + "\n"
 | |
| 
 | |
|             # call tools
 | |
|             tool_responses = []
 | |
|             for tool_call_id, tool_call_name, tool_call_args in tool_calls:
 | |
|                 tool_instance = tool_instances.get(tool_call_name)
 | |
|                 if not tool_instance:
 | |
|                     tool_response = {
 | |
|                         "tool_call_id": tool_call_id,
 | |
|                         "tool_call_name": tool_call_name,
 | |
|                         "tool_response": f"there is not a tool named {tool_call_name}",
 | |
|                         "meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict(),
 | |
|                     }
 | |
|                 else:
 | |
|                     # invoke tool
 | |
|                     tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
 | |
|                         tool=tool_instance,
 | |
|                         tool_parameters=tool_call_args,
 | |
|                         user_id=self.user_id,
 | |
|                         tenant_id=self.tenant_id,
 | |
|                         message=self.message,
 | |
|                         invoke_from=self.application_generate_entity.invoke_from,
 | |
|                         agent_tool_callback=self.agent_callback,
 | |
|                         trace_manager=trace_manager,
 | |
|                         app_id=self.application_generate_entity.app_config.app_id,
 | |
|                         message_id=self.message.id,
 | |
|                         conversation_id=self.conversation.id,
 | |
|                     )
 | |
|                     # publish files
 | |
|                     for message_file_id in message_files:
 | |
|                         # publish message file
 | |
|                         self.queue_manager.publish(
 | |
|                             QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
 | |
|                         )
 | |
|                         # add message file ids
 | |
|                         message_file_ids.append(message_file_id)
 | |
| 
 | |
|                     tool_response = {
 | |
|                         "tool_call_id": tool_call_id,
 | |
|                         "tool_call_name": tool_call_name,
 | |
|                         "tool_response": tool_invoke_response,
 | |
|                         "meta": tool_invoke_meta.to_dict(),
 | |
|                     }
 | |
| 
 | |
|                 tool_responses.append(tool_response)
 | |
|                 if tool_response["tool_response"] is not None:
 | |
|                     self._current_thoughts.append(
 | |
|                         ToolPromptMessage(
 | |
|                             content=str(tool_response["tool_response"]),
 | |
|                             tool_call_id=tool_call_id,
 | |
|                             name=tool_call_name,
 | |
|                         )
 | |
|                     )
 | |
| 
 | |
|             if len(tool_responses) > 0:
 | |
|                 # save agent thought
 | |
|                 self.save_agent_thought(
 | |
|                     agent_thought=agent_thought,
 | |
|                     tool_name="",
 | |
|                     tool_input="",
 | |
|                     thought="",
 | |
|                     tool_invoke_meta={
 | |
|                         tool_response["tool_call_name"]: tool_response["meta"] for tool_response in tool_responses
 | |
|                     },
 | |
|                     observation={
 | |
|                         tool_response["tool_call_name"]: tool_response["tool_response"]
 | |
|                         for tool_response in tool_responses
 | |
|                     },
 | |
|                     answer="",
 | |
|                     messages_ids=message_file_ids,
 | |
|                 )
 | |
|                 self.queue_manager.publish(
 | |
|                     QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 | |
|                 )
 | |
| 
 | |
|             # update prompt tool
 | |
|             for prompt_tool in prompt_messages_tools:
 | |
|                 self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
 | |
| 
 | |
|             iteration_step += 1
 | |
| 
 | |
|         # publish end event
 | |
|         self.queue_manager.publish(
 | |
|             QueueMessageEndEvent(
 | |
|                 llm_result=LLMResult(
 | |
|                     model=model_instance.model,
 | |
|                     prompt_messages=prompt_messages,
 | |
|                     message=AssistantPromptMessage(content=final_answer),
 | |
|                     usage=llm_usage["usage"] or LLMUsage.empty_usage(),
 | |
|                     system_fingerprint="",
 | |
|                 )
 | |
|             ),
 | |
|             PublishFrom.APPLICATION_MANAGER,
 | |
|         )
 | |
| 
 | |
|     def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
 | |
|         """
 | |
|         Check if there is any tool call in llm result chunk
 | |
|         """
 | |
|         if llm_result_chunk.delta.message.tool_calls:
 | |
|             return True
 | |
|         return False
 | |
| 
 | |
|     def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
 | |
|         """
 | |
|         Check if there is any blocking tool call in llm result
 | |
|         """
 | |
|         if llm_result.message.tool_calls:
 | |
|             return True
 | |
|         return False
 | |
| 
 | |
|     def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> list[tuple[str, str, dict[str, Any]]]:
 | |
|         """
 | |
|         Extract tool calls from llm result chunk
 | |
| 
 | |
|         Returns:
 | |
|             List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
 | |
|         """
 | |
|         tool_calls = []
 | |
|         for prompt_message in llm_result_chunk.delta.message.tool_calls:
 | |
|             args = {}
 | |
|             if prompt_message.function.arguments != "":
 | |
|                 args = json.loads(prompt_message.function.arguments)
 | |
| 
 | |
|             tool_calls.append(
 | |
|                 (
 | |
|                     prompt_message.id,
 | |
|                     prompt_message.function.name,
 | |
|                     args,
 | |
|                 )
 | |
|             )
 | |
| 
 | |
|         return tool_calls
 | |
| 
 | |
|     def extract_blocking_tool_calls(self, llm_result: LLMResult) -> list[tuple[str, str, dict[str, Any]]]:
 | |
|         """
 | |
|         Extract blocking tool calls from llm result
 | |
| 
 | |
|         Returns:
 | |
|             List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
 | |
|         """
 | |
|         tool_calls = []
 | |
|         for prompt_message in llm_result.message.tool_calls:
 | |
|             args = {}
 | |
|             if prompt_message.function.arguments != "":
 | |
|                 args = json.loads(prompt_message.function.arguments)
 | |
| 
 | |
|             tool_calls.append(
 | |
|                 (
 | |
|                     prompt_message.id,
 | |
|                     prompt_message.function.name,
 | |
|                     args,
 | |
|                 )
 | |
|             )
 | |
| 
 | |
|         return tool_calls
 | |
| 
 | |
|     def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
 | |
|         """
 | |
|         Initialize system message
 | |
|         """
 | |
|         if not prompt_messages and prompt_template:
 | |
|             return [
 | |
|                 SystemPromptMessage(content=prompt_template),
 | |
|             ]
 | |
| 
 | |
|         if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:
 | |
|             prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
 | |
| 
 | |
|         return prompt_messages or []
 | |
| 
 | |
|     def _organize_user_query(self, query: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
 | |
|         """
 | |
|         Organize user query
 | |
|         """
 | |
|         if self.files:
 | |
|             prompt_message_contents: list[PromptMessageContentUnionTypes] = []
 | |
|             prompt_message_contents.append(TextPromptMessageContent(data=query))
 | |
| 
 | |
|             # get image detail config
 | |
|             image_detail_config = (
 | |
|                 self.application_generate_entity.file_upload_config.image_config.detail
 | |
|                 if (
 | |
|                     self.application_generate_entity.file_upload_config
 | |
|                     and self.application_generate_entity.file_upload_config.image_config
 | |
|                 )
 | |
|                 else None
 | |
|             )
 | |
|             image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
 | |
|             for file in self.files:
 | |
|                 prompt_message_contents.append(
 | |
|                     file_manager.to_prompt_message_content(
 | |
|                         file,
 | |
|                         image_detail_config=image_detail_config,
 | |
|                     )
 | |
|                 )
 | |
| 
 | |
|             prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
 | |
|         else:
 | |
|             prompt_messages.append(UserPromptMessage(content=query))
 | |
| 
 | |
|         return prompt_messages
 | |
| 
 | |
|     def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
 | |
|         """
 | |
|         As for now, gpt supports both fc and vision at the first iteration.
 | |
|         We need to remove the image messages from the prompt messages at the first iteration.
 | |
|         """
 | |
|         prompt_messages = deepcopy(prompt_messages)
 | |
| 
 | |
|         for prompt_message in prompt_messages:
 | |
|             if isinstance(prompt_message, UserPromptMessage):
 | |
|                 if isinstance(prompt_message.content, list):
 | |
|                     prompt_message.content = "\n".join(
 | |
|                         [
 | |
|                             content.data
 | |
|                             if content.type == PromptMessageContentType.TEXT
 | |
|                             else "[image]"
 | |
|                             if content.type == PromptMessageContentType.IMAGE
 | |
|                             else "[file]"
 | |
|                             for content in prompt_message.content
 | |
|                         ]
 | |
|                     )
 | |
| 
 | |
|         return prompt_messages
 | |
| 
 | |
|     def _organize_prompt_messages(self):
 | |
|         prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
 | |
|         self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
 | |
|         query_prompt_messages = self._organize_user_query(self.query or "", [])
 | |
| 
 | |
|         self.history_prompt_messages = AgentHistoryPromptTransform(
 | |
|             model_config=self.model_config,
 | |
|             prompt_messages=[*query_prompt_messages, *self._current_thoughts],
 | |
|             history_messages=self.history_prompt_messages,
 | |
|             memory=self.memory,
 | |
|         ).get_prompt()
 | |
| 
 | |
|         prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
 | |
|         if len(self._current_thoughts) != 0:
 | |
|             # clear messages after the first iteration
 | |
|             prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
 | |
|         return prompt_messages
 |