mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-31 19:03:09 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			131 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			131 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from core.model_runtime.entities.model_entities import DefaultParameterName
 | ||
| 
 | ||
| PARAMETER_RULE_TEMPLATE: dict[DefaultParameterName, dict] = {
 | ||
|     DefaultParameterName.TEMPERATURE: {
 | ||
|         "label": {
 | ||
|             "en_US": "Temperature",
 | ||
|             "zh_Hans": "温度",
 | ||
|         },
 | ||
|         "type": "float",
 | ||
|         "help": {
 | ||
|             "en_US": "Controls randomness. Lower temperature results in less random completions."
 | ||
|             " As the temperature approaches zero, the model will become deterministic and repetitive."
 | ||
|             " Higher temperature results in more random completions.",
 | ||
|             "zh_Hans": "温度控制随机性。较低的温度会导致较少的随机完成。随着温度接近零,模型将变得确定性和重复性。"
 | ||
|             "较高的温度会导致更多的随机完成。",
 | ||
|         },
 | ||
|         "required": False,
 | ||
|         "default": 0.0,
 | ||
|         "min": 0.0,
 | ||
|         "max": 1.0,
 | ||
|         "precision": 2,
 | ||
|     },
 | ||
|     DefaultParameterName.TOP_P: {
 | ||
|         "label": {
 | ||
|             "en_US": "Top P",
 | ||
|             "zh_Hans": "Top P",
 | ||
|         },
 | ||
|         "type": "float",
 | ||
|         "help": {
 | ||
|             "en_US": "Controls diversity via nucleus sampling: 0.5 means half of all likelihood-weighted options"
 | ||
|             " are considered.",
 | ||
|             "zh_Hans": "通过核心采样控制多样性:0.5 表示考虑了一半的所有可能性加权选项。",
 | ||
|         },
 | ||
|         "required": False,
 | ||
|         "default": 1.0,
 | ||
|         "min": 0.0,
 | ||
|         "max": 1.0,
 | ||
|         "precision": 2,
 | ||
|     },
 | ||
|     DefaultParameterName.TOP_K: {
 | ||
|         "label": {
 | ||
|             "en_US": "Top K",
 | ||
|             "zh_Hans": "Top K",
 | ||
|         },
 | ||
|         "type": "int",
 | ||
|         "help": {
 | ||
|             "en_US": "Limits the number of tokens to consider for each step by keeping only the k most likely tokens.",
 | ||
|             "zh_Hans": "通过只保留每一步中最可能的 k 个标记来限制要考虑的标记数量。",
 | ||
|         },
 | ||
|         "required": False,
 | ||
|         "default": 50,
 | ||
|         "min": 1,
 | ||
|         "max": 100,
 | ||
|         "precision": 0,
 | ||
|     },
 | ||
|     DefaultParameterName.PRESENCE_PENALTY: {
 | ||
|         "label": {
 | ||
|             "en_US": "Presence Penalty",
 | ||
|             "zh_Hans": "存在惩罚",
 | ||
|         },
 | ||
|         "type": "float",
 | ||
|         "help": {
 | ||
|             "en_US": "Applies a penalty to the log-probability of tokens already in the text.",
 | ||
|             "zh_Hans": "对文本中已有的标记的对数概率施加惩罚。",
 | ||
|         },
 | ||
|         "required": False,
 | ||
|         "default": 0.0,
 | ||
|         "min": 0.0,
 | ||
|         "max": 1.0,
 | ||
|         "precision": 2,
 | ||
|     },
 | ||
|     DefaultParameterName.FREQUENCY_PENALTY: {
 | ||
|         "label": {
 | ||
|             "en_US": "Frequency Penalty",
 | ||
|             "zh_Hans": "频率惩罚",
 | ||
|         },
 | ||
|         "type": "float",
 | ||
|         "help": {
 | ||
|             "en_US": "Applies a penalty to the log-probability of tokens that appear in the text.",
 | ||
|             "zh_Hans": "对文本中出现的标记的对数概率施加惩罚。",
 | ||
|         },
 | ||
|         "required": False,
 | ||
|         "default": 0.0,
 | ||
|         "min": 0.0,
 | ||
|         "max": 1.0,
 | ||
|         "precision": 2,
 | ||
|     },
 | ||
|     DefaultParameterName.MAX_TOKENS: {
 | ||
|         "label": {
 | ||
|             "en_US": "Max Tokens",
 | ||
|             "zh_Hans": "最大标记",
 | ||
|         },
 | ||
|         "type": "int",
 | ||
|         "help": {
 | ||
|             "en_US": "Specifies the upper limit on the length of generated results."
 | ||
|             " If the generated results are truncated, you can increase this parameter.",
 | ||
|             "zh_Hans": "指定生成结果长度的上限。如果生成结果截断,可以调大该参数。",
 | ||
|         },
 | ||
|         "required": False,
 | ||
|         "default": 64,
 | ||
|         "min": 1,
 | ||
|         "max": 2048,
 | ||
|         "precision": 0,
 | ||
|     },
 | ||
|     DefaultParameterName.RESPONSE_FORMAT: {
 | ||
|         "label": {
 | ||
|             "en_US": "Response Format",
 | ||
|             "zh_Hans": "回复格式",
 | ||
|         },
 | ||
|         "type": "string",
 | ||
|         "help": {
 | ||
|             "en_US": "Set a response format, ensure the output from llm is a valid code block as possible,"
 | ||
|             " such as JSON, XML, etc.",
 | ||
|             "zh_Hans": "设置一个返回格式,确保 llm 的输出尽可能是有效的代码块,如 JSON、XML 等",
 | ||
|         },
 | ||
|         "required": False,
 | ||
|         "options": ["JSON", "XML"],
 | ||
|     },
 | ||
|     DefaultParameterName.JSON_SCHEMA: {
 | ||
|         "label": {
 | ||
|             "en_US": "JSON Schema",
 | ||
|         },
 | ||
|         "type": "text",
 | ||
|         "help": {
 | ||
|             "en_US": "Set a response json schema will ensure LLM to adhere it.",
 | ||
|             "zh_Hans": "设置返回的 json schema,llm 将按照它返回",
 | ||
|         },
 | ||
|         "required": False,
 | ||
|     },
 | ||
| }
 | 
