dify/api/core/rag/datasource/retrieval_service.py
Jyong 9affc546c6
Feat/support multimodal embedding (#29115)
Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
2025-12-09 14:41:46 +08:00

697 lines
31 KiB
Python

import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
from typing import Any
from flask import Flask, current_app
from sqlalchemy import select
from sqlalchemy.orm import Session, load_only
from configs import dify_config
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
from core.rag.datasource.keyword.keyword_factory import Keyword
from core.rag.datasource.vdb.vector_factory import Vector
from core.rag.embedding.retrieval import RetrievalSegments
from core.rag.entities.metadata_entities import MetadataCondition
from core.rag.index_processor.constant.doc_type import DocType
from core.rag.index_processor.constant.index_type import IndexStructureType
from core.rag.index_processor.constant.query_type import QueryType
from core.rag.models.document import Document
from core.rag.rerank.rerank_type import RerankMode
from core.rag.retrieval.retrieval_methods import RetrievalMethod
from core.tools.signature import sign_upload_file
from extensions.ext_database import db
from models.dataset import ChildChunk, Dataset, DocumentSegment, SegmentAttachmentBinding
from models.dataset import Document as DatasetDocument
from models.model import UploadFile
from services.external_knowledge_service import ExternalDatasetService
default_retrieval_model = {
"search_method": RetrievalMethod.SEMANTIC_SEARCH,
"reranking_enable": False,
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
"top_k": 4,
"score_threshold_enabled": False,
}
class RetrievalService:
# Cache precompiled regular expressions to avoid repeated compilation
@classmethod
def retrieve(
cls,
retrieval_method: RetrievalMethod,
dataset_id: str,
query: str,
top_k: int = 4,
score_threshold: float | None = 0.0,
reranking_model: dict | None = None,
reranking_mode: str = "reranking_model",
weights: dict | None = None,
document_ids_filter: list[str] | None = None,
attachment_ids: list | None = None,
):
if not query and not attachment_ids:
return []
dataset = cls._get_dataset(dataset_id)
if not dataset:
return []
all_documents: list[Document] = []
exceptions: list[str] = []
# Optimize multithreading with thread pools
with ThreadPoolExecutor(max_workers=dify_config.RETRIEVAL_SERVICE_EXECUTORS) as executor: # type: ignore
futures = []
retrieval_service = RetrievalService()
if query:
futures.append(
executor.submit(
retrieval_service._retrieve,
flask_app=current_app._get_current_object(), # type: ignore
retrieval_method=retrieval_method,
dataset=dataset,
query=query,
top_k=top_k,
score_threshold=score_threshold,
reranking_model=reranking_model,
reranking_mode=reranking_mode,
weights=weights,
document_ids_filter=document_ids_filter,
attachment_id=None,
all_documents=all_documents,
exceptions=exceptions,
)
)
if attachment_ids:
for attachment_id in attachment_ids:
futures.append(
executor.submit(
retrieval_service._retrieve,
flask_app=current_app._get_current_object(), # type: ignore
retrieval_method=retrieval_method,
dataset=dataset,
query=None,
top_k=top_k,
score_threshold=score_threshold,
reranking_model=reranking_model,
reranking_mode=reranking_mode,
weights=weights,
document_ids_filter=document_ids_filter,
attachment_id=attachment_id,
all_documents=all_documents,
exceptions=exceptions,
)
)
concurrent.futures.wait(futures, timeout=3600, return_when=concurrent.futures.ALL_COMPLETED)
if exceptions:
raise ValueError(";\n".join(exceptions))
return all_documents
@classmethod
def external_retrieve(
cls,
dataset_id: str,
query: str,
external_retrieval_model: dict | None = None,
metadata_filtering_conditions: dict | None = None,
):
stmt = select(Dataset).where(Dataset.id == dataset_id)
dataset = db.session.scalar(stmt)
if not dataset:
return []
metadata_condition = (
MetadataCondition.model_validate(metadata_filtering_conditions) if metadata_filtering_conditions else None
)
all_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
dataset.tenant_id,
dataset_id,
query,
external_retrieval_model or {},
metadata_condition=metadata_condition,
)
return all_documents
@classmethod
def _deduplicate_documents(cls, documents: list[Document]) -> list[Document]:
"""Deduplicate documents based on doc_id to avoid duplicate chunks in hybrid search."""
if not documents:
return documents
unique_documents = []
seen_doc_ids = set()
for document in documents:
# For dify provider documents, use doc_id for deduplication
if document.provider == "dify" and document.metadata is not None and "doc_id" in document.metadata:
doc_id = document.metadata["doc_id"]
if doc_id not in seen_doc_ids:
seen_doc_ids.add(doc_id)
unique_documents.append(document)
# If duplicate, keep the one with higher score
elif "score" in document.metadata:
# Find existing document with same doc_id and compare scores
for i, existing_doc in enumerate(unique_documents):
if (
existing_doc.metadata
and existing_doc.metadata.get("doc_id") == doc_id
and existing_doc.metadata.get("score", 0) < document.metadata.get("score", 0)
):
unique_documents[i] = document
break
else:
# For non-dify documents, use content-based deduplication
if document not in unique_documents:
unique_documents.append(document)
return unique_documents
@classmethod
def _get_dataset(cls, dataset_id: str) -> Dataset | None:
with Session(db.engine) as session:
return session.query(Dataset).where(Dataset.id == dataset_id).first()
@classmethod
def keyword_search(
cls,
flask_app: Flask,
dataset_id: str,
query: str,
top_k: int,
all_documents: list,
exceptions: list,
document_ids_filter: list[str] | None = None,
):
with flask_app.app_context():
try:
dataset = cls._get_dataset(dataset_id)
if not dataset:
raise ValueError("dataset not found")
keyword = Keyword(dataset=dataset)
documents = keyword.search(
cls.escape_query_for_search(query), top_k=top_k, document_ids_filter=document_ids_filter
)
all_documents.extend(documents)
except Exception as e:
exceptions.append(str(e))
@classmethod
def embedding_search(
cls,
flask_app: Flask,
dataset_id: str,
query: str,
top_k: int,
score_threshold: float | None,
reranking_model: dict | None,
all_documents: list,
retrieval_method: RetrievalMethod,
exceptions: list,
document_ids_filter: list[str] | None = None,
query_type: QueryType = QueryType.TEXT_QUERY,
):
with flask_app.app_context():
try:
dataset = cls._get_dataset(dataset_id)
if not dataset:
raise ValueError("dataset not found")
vector = Vector(dataset=dataset)
documents = []
if query_type == QueryType.TEXT_QUERY:
documents.extend(
vector.search_by_vector(
query,
search_type="similarity_score_threshold",
top_k=top_k,
score_threshold=score_threshold,
filter={"group_id": [dataset.id]},
document_ids_filter=document_ids_filter,
)
)
if query_type == QueryType.IMAGE_QUERY:
if not dataset.is_multimodal:
return
documents.extend(
vector.search_by_file(
file_id=query,
top_k=top_k,
score_threshold=score_threshold,
filter={"group_id": [dataset.id]},
document_ids_filter=document_ids_filter,
)
)
if documents:
if (
reranking_model
and reranking_model.get("reranking_model_name")
and reranking_model.get("reranking_provider_name")
and retrieval_method == RetrievalMethod.SEMANTIC_SEARCH
):
data_post_processor = DataPostProcessor(
str(dataset.tenant_id), str(RerankMode.RERANKING_MODEL), reranking_model, None, False
)
if dataset.is_multimodal:
model_manager = ModelManager()
is_support_vision = model_manager.check_model_support_vision(
tenant_id=dataset.tenant_id,
provider=reranking_model.get("reranking_provider_name") or "",
model=reranking_model.get("reranking_model_name") or "",
model_type=ModelType.RERANK,
)
if is_support_vision:
all_documents.extend(
data_post_processor.invoke(
query=query,
documents=documents,
score_threshold=score_threshold,
top_n=len(documents),
query_type=query_type,
)
)
else:
# not effective, return original documents
all_documents.extend(documents)
else:
all_documents.extend(
data_post_processor.invoke(
query=query,
documents=documents,
score_threshold=score_threshold,
top_n=len(documents),
query_type=query_type,
)
)
else:
all_documents.extend(documents)
except Exception as e:
exceptions.append(str(e))
@classmethod
def full_text_index_search(
cls,
flask_app: Flask,
dataset_id: str,
query: str,
top_k: int,
score_threshold: float | None,
reranking_model: dict | None,
all_documents: list,
retrieval_method: str,
exceptions: list,
document_ids_filter: list[str] | None = None,
):
with flask_app.app_context():
try:
dataset = cls._get_dataset(dataset_id)
if not dataset:
raise ValueError("dataset not found")
vector_processor = Vector(dataset=dataset)
documents = vector_processor.search_by_full_text(
cls.escape_query_for_search(query), top_k=top_k, document_ids_filter=document_ids_filter
)
if documents:
if (
reranking_model
and reranking_model.get("reranking_model_name")
and reranking_model.get("reranking_provider_name")
and retrieval_method == RetrievalMethod.FULL_TEXT_SEARCH
):
data_post_processor = DataPostProcessor(
str(dataset.tenant_id), str(RerankMode.RERANKING_MODEL), reranking_model, None, False
)
all_documents.extend(
data_post_processor.invoke(
query=query,
documents=documents,
score_threshold=score_threshold,
top_n=len(documents),
)
)
else:
all_documents.extend(documents)
except Exception as e:
exceptions.append(str(e))
@staticmethod
def escape_query_for_search(query: str) -> str:
return query.replace('"', '\\"')
@classmethod
def format_retrieval_documents(cls, documents: list[Document]) -> list[RetrievalSegments]:
"""Format retrieval documents with optimized batch processing"""
if not documents:
return []
try:
# Collect document IDs
document_ids = {doc.metadata.get("document_id") for doc in documents if "document_id" in doc.metadata}
if not document_ids:
return []
# Batch query dataset documents
dataset_documents = {
doc.id: doc
for doc in db.session.query(DatasetDocument)
.where(DatasetDocument.id.in_(document_ids))
.options(load_only(DatasetDocument.id, DatasetDocument.doc_form, DatasetDocument.dataset_id))
.all()
}
records = []
include_segment_ids = set()
segment_child_map = {}
segment_file_map = {}
with Session(db.engine) as session:
# Process documents
for document in documents:
segment_id = None
attachment_info = None
child_chunk = None
document_id = document.metadata.get("document_id")
if document_id not in dataset_documents:
continue
dataset_document = dataset_documents[document_id]
if not dataset_document:
continue
if dataset_document.doc_form == IndexStructureType.PARENT_CHILD_INDEX:
# Handle parent-child documents
if document.metadata.get("doc_type") == DocType.IMAGE:
attachment_info_dict = cls.get_segment_attachment_info(
dataset_document.dataset_id,
dataset_document.tenant_id,
document.metadata.get("doc_id") or "",
session,
)
if attachment_info_dict:
attachment_info = attachment_info_dict["attchment_info"]
segment_id = attachment_info_dict["segment_id"]
else:
child_index_node_id = document.metadata.get("doc_id")
child_chunk_stmt = select(ChildChunk).where(ChildChunk.index_node_id == child_index_node_id)
child_chunk = session.scalar(child_chunk_stmt)
if not child_chunk:
continue
segment_id = child_chunk.segment_id
if not segment_id:
continue
segment = (
session.query(DocumentSegment)
.where(
DocumentSegment.dataset_id == dataset_document.dataset_id,
DocumentSegment.enabled == True,
DocumentSegment.status == "completed",
DocumentSegment.id == segment_id,
)
.options(
load_only(
DocumentSegment.id,
DocumentSegment.content,
DocumentSegment.answer,
)
)
.first()
)
if not segment:
continue
if segment.id not in include_segment_ids:
include_segment_ids.add(segment.id)
if child_chunk:
child_chunk_detail = {
"id": child_chunk.id,
"content": child_chunk.content,
"position": child_chunk.position,
"score": document.metadata.get("score", 0.0),
}
map_detail = {
"max_score": document.metadata.get("score", 0.0),
"child_chunks": [child_chunk_detail],
}
segment_child_map[segment.id] = map_detail
record = {
"segment": segment,
}
if attachment_info:
segment_file_map[segment.id] = [attachment_info]
records.append(record)
else:
if child_chunk:
child_chunk_detail = {
"id": child_chunk.id,
"content": child_chunk.content,
"position": child_chunk.position,
"score": document.metadata.get("score", 0.0),
}
segment_child_map[segment.id]["child_chunks"].append(child_chunk_detail)
segment_child_map[segment.id]["max_score"] = max(
segment_child_map[segment.id]["max_score"], document.metadata.get("score", 0.0)
)
if attachment_info:
segment_file_map[segment.id].append(attachment_info)
else:
# Handle normal documents
segment = None
if document.metadata.get("doc_type") == DocType.IMAGE:
attachment_info_dict = cls.get_segment_attachment_info(
dataset_document.dataset_id,
dataset_document.tenant_id,
document.metadata.get("doc_id") or "",
session,
)
if attachment_info_dict:
attachment_info = attachment_info_dict["attchment_info"]
segment_id = attachment_info_dict["segment_id"]
document_segment_stmt = select(DocumentSegment).where(
DocumentSegment.dataset_id == dataset_document.dataset_id,
DocumentSegment.enabled == True,
DocumentSegment.status == "completed",
DocumentSegment.id == segment_id,
)
segment = db.session.scalar(document_segment_stmt)
if segment:
segment_file_map[segment.id] = [attachment_info]
else:
index_node_id = document.metadata.get("doc_id")
if not index_node_id:
continue
document_segment_stmt = select(DocumentSegment).where(
DocumentSegment.dataset_id == dataset_document.dataset_id,
DocumentSegment.enabled == True,
DocumentSegment.status == "completed",
DocumentSegment.index_node_id == index_node_id,
)
segment = db.session.scalar(document_segment_stmt)
if not segment:
continue
if segment.id not in include_segment_ids:
include_segment_ids.add(segment.id)
record = {
"segment": segment,
"score": document.metadata.get("score"), # type: ignore
}
if attachment_info:
segment_file_map[segment.id] = [attachment_info]
records.append(record)
else:
if attachment_info:
attachment_infos = segment_file_map.get(segment.id, [])
if attachment_info not in attachment_infos:
attachment_infos.append(attachment_info)
segment_file_map[segment.id] = attachment_infos
# Add child chunks information to records
for record in records:
if record["segment"].id in segment_child_map:
record["child_chunks"] = segment_child_map[record["segment"].id].get("child_chunks") # type: ignore
record["score"] = segment_child_map[record["segment"].id]["max_score"]
if record["segment"].id in segment_file_map:
record["files"] = segment_file_map[record["segment"].id] # type: ignore[assignment]
result = []
for record in records:
# Extract segment
segment = record["segment"]
# Extract child_chunks, ensuring it's a list or None
child_chunks = record.get("child_chunks")
if not isinstance(child_chunks, list):
child_chunks = None
# Extract files, ensuring it's a list or None
files = record.get("files")
if not isinstance(files, list):
files = None
# Extract score, ensuring it's a float or None
score_value = record.get("score")
score = (
float(score_value)
if score_value is not None and isinstance(score_value, int | float | str)
else None
)
# Create RetrievalSegments object
retrieval_segment = RetrievalSegments(
segment=segment, child_chunks=child_chunks, score=score, files=files
)
result.append(retrieval_segment)
return result
except Exception as e:
db.session.rollback()
raise e
def _retrieve(
self,
flask_app: Flask,
retrieval_method: RetrievalMethod,
dataset: Dataset,
query: str | None = None,
top_k: int = 4,
score_threshold: float | None = 0.0,
reranking_model: dict | None = None,
reranking_mode: str = "reranking_model",
weights: dict | None = None,
document_ids_filter: list[str] | None = None,
attachment_id: str | None = None,
all_documents: list[Document] = [],
exceptions: list[str] = [],
):
if not query and not attachment_id:
return
with flask_app.app_context():
all_documents_item: list[Document] = []
# Optimize multithreading with thread pools
with ThreadPoolExecutor(max_workers=dify_config.RETRIEVAL_SERVICE_EXECUTORS) as executor: # type: ignore
futures = []
if retrieval_method == RetrievalMethod.KEYWORD_SEARCH and query:
futures.append(
executor.submit(
self.keyword_search,
flask_app=current_app._get_current_object(), # type: ignore
dataset_id=dataset.id,
query=query,
top_k=top_k,
all_documents=all_documents_item,
exceptions=exceptions,
document_ids_filter=document_ids_filter,
)
)
if RetrievalMethod.is_support_semantic_search(retrieval_method):
if query:
futures.append(
executor.submit(
self.embedding_search,
flask_app=current_app._get_current_object(), # type: ignore
dataset_id=dataset.id,
query=query,
top_k=top_k,
score_threshold=score_threshold,
reranking_model=reranking_model,
all_documents=all_documents_item,
retrieval_method=retrieval_method,
exceptions=exceptions,
document_ids_filter=document_ids_filter,
query_type=QueryType.TEXT_QUERY,
)
)
if attachment_id:
futures.append(
executor.submit(
self.embedding_search,
flask_app=current_app._get_current_object(), # type: ignore
dataset_id=dataset.id,
query=attachment_id,
top_k=top_k,
score_threshold=score_threshold,
reranking_model=reranking_model,
all_documents=all_documents_item,
retrieval_method=retrieval_method,
exceptions=exceptions,
document_ids_filter=document_ids_filter,
query_type=QueryType.IMAGE_QUERY,
)
)
if RetrievalMethod.is_support_fulltext_search(retrieval_method) and query:
futures.append(
executor.submit(
self.full_text_index_search,
flask_app=current_app._get_current_object(), # type: ignore
dataset_id=dataset.id,
query=query,
top_k=top_k,
score_threshold=score_threshold,
reranking_model=reranking_model,
all_documents=all_documents_item,
retrieval_method=retrieval_method,
exceptions=exceptions,
document_ids_filter=document_ids_filter,
)
)
concurrent.futures.wait(futures, timeout=300, return_when=concurrent.futures.ALL_COMPLETED)
if exceptions:
raise ValueError(";\n".join(exceptions))
# Deduplicate documents for hybrid search to avoid duplicate chunks
if retrieval_method == RetrievalMethod.HYBRID_SEARCH:
if attachment_id and reranking_mode == RerankMode.WEIGHTED_SCORE:
all_documents.extend(all_documents_item)
all_documents_item = self._deduplicate_documents(all_documents_item)
data_post_processor = DataPostProcessor(
str(dataset.tenant_id), reranking_mode, reranking_model, weights, False
)
query = query or attachment_id
if not query:
return
all_documents_item = data_post_processor.invoke(
query=query,
documents=all_documents_item,
score_threshold=score_threshold,
top_n=top_k,
query_type=QueryType.TEXT_QUERY if query else QueryType.IMAGE_QUERY,
)
all_documents.extend(all_documents_item)
@classmethod
def get_segment_attachment_info(
cls, dataset_id: str, tenant_id: str, attachment_id: str, session: Session
) -> dict[str, Any] | None:
upload_file = session.query(UploadFile).where(UploadFile.id == attachment_id).first()
if upload_file:
attachment_binding = (
session.query(SegmentAttachmentBinding)
.where(SegmentAttachmentBinding.attachment_id == upload_file.id)
.first()
)
if attachment_binding:
attchment_info = {
"id": upload_file.id,
"name": upload_file.name,
"extension": "." + upload_file.extension,
"mime_type": upload_file.mime_type,
"source_url": sign_upload_file(upload_file.id, upload_file.extension),
"size": upload_file.size,
}
return {"attchment_info": attchment_info, "segment_id": attachment_binding.segment_id}
return None