mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-29 18:03:13 +00:00 
			
		
		
		
	 86286e1ac8
			
		
	
	
		86286e1ac8
		
			
		
	
	
	
	
		
			
			Co-authored-by: chenhe <guchenhe@gmail.com> Co-authored-by: Pascal M <11357019+perzeuss@users.noreply.github.com>
		
			
				
	
	
		
			180 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			180 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import List, Optional, cast
 | |
| 
 | |
| from core.agent.agent_executor import AgentConfiguration, AgentExecutor, PlanningStrategy
 | |
| from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
 | |
| from core.entities.application_entities import DatasetEntity, DatasetRetrieveConfigEntity, InvokeFrom, ModelConfigEntity
 | |
| from core.memory.token_buffer_memory import TokenBufferMemory
 | |
| from core.model_runtime.entities.model_entities import ModelFeature
 | |
| from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
 | |
| from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
 | |
| from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
 | |
| from extensions.ext_database import db
 | |
| from langchain.tools import BaseTool
 | |
| from models.dataset import Dataset
 | |
| 
 | |
| 
 | |
| class DatasetRetrievalFeature:
 | |
|     def retrieve(self, tenant_id: str,
 | |
|                  model_config: ModelConfigEntity,
 | |
|                  config: DatasetEntity,
 | |
|                  query: str,
 | |
|                  invoke_from: InvokeFrom,
 | |
|                  show_retrieve_source: bool,
 | |
|                  hit_callback: DatasetIndexToolCallbackHandler,
 | |
|                  memory: Optional[TokenBufferMemory] = None) -> Optional[str]:
 | |
|         """
 | |
|         Retrieve dataset.
 | |
|         :param tenant_id: tenant id
 | |
|         :param model_config: model config
 | |
|         :param config: dataset config
 | |
|         :param query: query
 | |
|         :param invoke_from: invoke from
 | |
|         :param show_retrieve_source: show retrieve source
 | |
|         :param hit_callback: hit callback
 | |
|         :param memory: memory
 | |
|         :return:
 | |
|         """
 | |
|         dataset_ids = config.dataset_ids
 | |
|         retrieve_config = config.retrieve_config
 | |
| 
 | |
|         # check model is support tool calling
 | |
|         model_type_instance = model_config.provider_model_bundle.model_type_instance
 | |
|         model_type_instance = cast(LargeLanguageModel, model_type_instance)
 | |
| 
 | |
|         # get model schema
 | |
|         model_schema = model_type_instance.get_model_schema(
 | |
|             model=model_config.model,
 | |
|             credentials=model_config.credentials
 | |
|         )
 | |
| 
 | |
|         if not model_schema:
 | |
|             return None
 | |
| 
 | |
|         planning_strategy = PlanningStrategy.REACT_ROUTER
 | |
|         features = model_schema.features
 | |
|         if features:
 | |
|             if ModelFeature.TOOL_CALL in features \
 | |
|                     or ModelFeature.MULTI_TOOL_CALL in features:
 | |
|                 planning_strategy = PlanningStrategy.ROUTER
 | |
| 
 | |
|         dataset_retriever_tools = self.to_dataset_retriever_tool(
 | |
|             tenant_id=tenant_id,
 | |
|             dataset_ids=dataset_ids,
 | |
|             retrieve_config=retrieve_config,
 | |
|             return_resource=show_retrieve_source,
 | |
|             invoke_from=invoke_from,
 | |
|             hit_callback=hit_callback
 | |
|         )
 | |
| 
 | |
|         if len(dataset_retriever_tools) == 0:
 | |
|             return None
 | |
| 
 | |
|         agent_configuration = AgentConfiguration(
 | |
|             strategy=planning_strategy,
 | |
|             model_config=model_config,
 | |
|             tools=dataset_retriever_tools,
 | |
|             memory=memory,
 | |
|             max_iterations=10,
 | |
|             max_execution_time=400.0,
 | |
|             early_stopping_method="generate"
 | |
|         )
 | |
| 
 | |
|         agent_executor = AgentExecutor(agent_configuration)
 | |
| 
 | |
|         should_use_agent = agent_executor.should_use_agent(query)
 | |
|         if not should_use_agent:
 | |
|             return None
 | |
| 
 | |
|         result = agent_executor.run(query)
 | |
| 
 | |
|         return result.output
 | |
| 
 | |
|     def to_dataset_retriever_tool(self, tenant_id: str,
 | |
|                                   dataset_ids: list[str],
 | |
|                                   retrieve_config: DatasetRetrieveConfigEntity,
 | |
|                                   return_resource: bool,
 | |
|                                   invoke_from: InvokeFrom,
 | |
|                                   hit_callback: DatasetIndexToolCallbackHandler) \
 | |
|             -> Optional[List[BaseTool]]:
 | |
|         """
 | |
|         A dataset tool is a tool that can be used to retrieve information from a dataset
 | |
|         :param tenant_id: tenant id
 | |
|         :param dataset_ids: dataset ids
 | |
|         :param retrieve_config: retrieve config
 | |
|         :param return_resource: return resource
 | |
|         :param invoke_from: invoke from
 | |
|         :param hit_callback: hit callback
 | |
|         """
 | |
|         tools = []
 | |
|         available_datasets = []
 | |
|         for dataset_id in dataset_ids:
 | |
|             # get dataset from dataset id
 | |
|             dataset = db.session.query(Dataset).filter(
 | |
|                 Dataset.tenant_id == tenant_id,
 | |
|                 Dataset.id == dataset_id
 | |
|             ).first()
 | |
| 
 | |
|             # pass if dataset is not available
 | |
|             if not dataset:
 | |
|                 continue
 | |
| 
 | |
|             # pass if dataset is not available
 | |
|             if (dataset and dataset.available_document_count == 0
 | |
|                     and dataset.available_document_count == 0):
 | |
|                 continue
 | |
| 
 | |
|             available_datasets.append(dataset)
 | |
| 
 | |
|         if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
 | |
|             # get retrieval model config
 | |
|             default_retrieval_model = {
 | |
|                 'search_method': 'semantic_search',
 | |
|                 'reranking_enable': False,
 | |
|                 'reranking_model': {
 | |
|                     'reranking_provider_name': '',
 | |
|                     'reranking_model_name': ''
 | |
|                 },
 | |
|                 'top_k': 2,
 | |
|                 'score_threshold_enabled': False
 | |
|             }
 | |
| 
 | |
|             for dataset in available_datasets:
 | |
|                 retrieval_model_config = dataset.retrieval_model \
 | |
|                     if dataset.retrieval_model else default_retrieval_model
 | |
| 
 | |
|                 # get top k
 | |
|                 top_k = retrieval_model_config['top_k']
 | |
| 
 | |
|                 # get score threshold
 | |
|                 score_threshold = None
 | |
|                 score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
 | |
|                 if score_threshold_enabled:
 | |
|                     score_threshold = retrieval_model_config.get("score_threshold")
 | |
| 
 | |
|                 tool = DatasetRetrieverTool.from_dataset(
 | |
|                     dataset=dataset,
 | |
|                     top_k=top_k,
 | |
|                     score_threshold=score_threshold,
 | |
|                     hit_callbacks=[hit_callback],
 | |
|                     return_resource=return_resource,
 | |
|                     retriever_from=invoke_from.to_source()
 | |
|                 )
 | |
| 
 | |
|                 tools.append(tool)
 | |
|         elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
 | |
|             tool = DatasetMultiRetrieverTool.from_dataset(
 | |
|                 dataset_ids=[dataset.id for dataset in available_datasets],
 | |
|                 tenant_id=tenant_id,
 | |
|                 top_k=retrieve_config.top_k or 2,
 | |
|                 score_threshold=retrieve_config.score_threshold,
 | |
|                 hit_callbacks=[hit_callback],
 | |
|                 return_resource=return_resource,
 | |
|                 retriever_from=invoke_from.to_source(),
 | |
|                 reranking_provider_name=retrieve_config.reranking_model.get('reranking_provider_name'),
 | |
|                 reranking_model_name=retrieve_config.reranking_model.get('reranking_model_name')
 | |
|             )
 | |
| 
 | |
|             tools.append(tool)
 | |
| 
 | |
|         return tools
 |