mirror of
https://github.com/langgenius/dify.git
synced 2025-07-10 10:44:51 +00:00
290 lines
11 KiB
Python
290 lines
11 KiB
Python
import json
|
|
import os
|
|
import time
|
|
import uuid
|
|
from collections.abc import Generator
|
|
from decimal import Decimal
|
|
from unittest.mock import MagicMock, patch
|
|
|
|
import pytest
|
|
|
|
from core.app.entities.app_invoke_entities import InvokeFrom
|
|
from core.llm_generator.output_parser.structured_output import _parse_structured_output
|
|
from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
|
|
from core.model_runtime.entities.message_entities import AssistantPromptMessage
|
|
from core.workflow.entities.variable_pool import VariablePool
|
|
from core.workflow.entities.workflow_node_execution import WorkflowNodeExecutionStatus
|
|
from core.workflow.enums import SystemVariableKey
|
|
from core.workflow.graph_engine.entities.graph import Graph
|
|
from core.workflow.graph_engine.entities.graph_init_params import GraphInitParams
|
|
from core.workflow.graph_engine.entities.graph_runtime_state import GraphRuntimeState
|
|
from core.workflow.nodes.event import RunCompletedEvent
|
|
from core.workflow.nodes.llm.node import LLMNode
|
|
from extensions.ext_database import db
|
|
from models.enums import UserFrom
|
|
from models.workflow import WorkflowType
|
|
|
|
"""FOR MOCK FIXTURES, DO NOT REMOVE"""
|
|
from tests.integration_tests.model_runtime.__mock.plugin_daemon import setup_model_mock
|
|
from tests.integration_tests.workflow.nodes.__mock.code_executor import setup_code_executor_mock
|
|
|
|
|
|
def init_llm_node(config: dict) -> LLMNode:
|
|
graph_config = {
|
|
"edges": [
|
|
{
|
|
"id": "start-source-next-target",
|
|
"source": "start",
|
|
"target": "llm",
|
|
},
|
|
],
|
|
"nodes": [{"data": {"type": "start"}, "id": "start"}, config],
|
|
}
|
|
|
|
graph = Graph.init(graph_config=graph_config)
|
|
|
|
# Use proper UUIDs for database compatibility
|
|
tenant_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056b"
|
|
app_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056c"
|
|
workflow_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056d"
|
|
user_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056e"
|
|
|
|
init_params = GraphInitParams(
|
|
tenant_id=tenant_id,
|
|
app_id=app_id,
|
|
workflow_type=WorkflowType.WORKFLOW,
|
|
workflow_id=workflow_id,
|
|
graph_config=graph_config,
|
|
user_id=user_id,
|
|
user_from=UserFrom.ACCOUNT,
|
|
invoke_from=InvokeFrom.DEBUGGER,
|
|
call_depth=0,
|
|
)
|
|
|
|
# construct variable pool
|
|
variable_pool = VariablePool(
|
|
system_variables={
|
|
SystemVariableKey.QUERY: "what's the weather today?",
|
|
SystemVariableKey.FILES: [],
|
|
SystemVariableKey.CONVERSATION_ID: "abababa",
|
|
SystemVariableKey.USER_ID: "aaa",
|
|
},
|
|
user_inputs={},
|
|
environment_variables=[],
|
|
conversation_variables=[],
|
|
)
|
|
variable_pool.add(["abc", "output"], "sunny")
|
|
|
|
node = LLMNode(
|
|
id=str(uuid.uuid4()),
|
|
graph_init_params=init_params,
|
|
graph=graph,
|
|
graph_runtime_state=GraphRuntimeState(variable_pool=variable_pool, start_at=time.perf_counter()),
|
|
config=config,
|
|
)
|
|
|
|
return node
|
|
|
|
|
|
def test_execute_llm(flask_req_ctx):
|
|
node = init_llm_node(
|
|
config={
|
|
"id": "llm",
|
|
"data": {
|
|
"title": "123",
|
|
"type": "llm",
|
|
"model": {
|
|
"provider": "langgenius/openai/openai",
|
|
"name": "gpt-3.5-turbo",
|
|
"mode": "chat",
|
|
"completion_params": {},
|
|
},
|
|
"prompt_template": [
|
|
{
|
|
"role": "system",
|
|
"text": "you are a helpful assistant.\ntoday's weather is {{#abc.output#}}.",
|
|
},
|
|
{"role": "user", "text": "{{#sys.query#}}"},
|
|
],
|
|
"memory": None,
|
|
"context": {"enabled": False},
|
|
"vision": {"enabled": False},
|
|
},
|
|
},
|
|
)
|
|
|
|
credentials = {"openai_api_key": os.environ.get("OPENAI_API_KEY")}
|
|
|
|
# Create a proper LLM result with real entities
|
|
mock_usage = LLMUsage(
|
|
prompt_tokens=30,
|
|
prompt_unit_price=Decimal("0.001"),
|
|
prompt_price_unit=Decimal("1000"),
|
|
prompt_price=Decimal("0.00003"),
|
|
completion_tokens=20,
|
|
completion_unit_price=Decimal("0.002"),
|
|
completion_price_unit=Decimal("1000"),
|
|
completion_price=Decimal("0.00004"),
|
|
total_tokens=50,
|
|
total_price=Decimal("0.00007"),
|
|
currency="USD",
|
|
latency=0.5,
|
|
)
|
|
|
|
mock_message = AssistantPromptMessage(content="This is a test response from the mocked LLM.")
|
|
|
|
mock_llm_result = LLMResult(
|
|
model="gpt-3.5-turbo",
|
|
prompt_messages=[],
|
|
message=mock_message,
|
|
usage=mock_usage,
|
|
)
|
|
|
|
# Create a simple mock model instance that doesn't call real providers
|
|
mock_model_instance = MagicMock()
|
|
mock_model_instance.invoke_llm.return_value = mock_llm_result
|
|
|
|
# Create a simple mock model config with required attributes
|
|
mock_model_config = MagicMock()
|
|
mock_model_config.mode = "chat"
|
|
mock_model_config.provider = "langgenius/openai/openai"
|
|
mock_model_config.model = "gpt-3.5-turbo"
|
|
mock_model_config.provider_model_bundle.configuration.tenant_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056b"
|
|
|
|
# Mock the _fetch_model_config method
|
|
def mock_fetch_model_config_func(_node_data_model):
|
|
return mock_model_instance, mock_model_config
|
|
|
|
# Also mock ModelManager.get_model_instance to avoid database calls
|
|
def mock_get_model_instance(_self, **kwargs):
|
|
return mock_model_instance
|
|
|
|
with (
|
|
patch.object(node, "_fetch_model_config", mock_fetch_model_config_func),
|
|
patch("core.model_manager.ModelManager.get_model_instance", mock_get_model_instance),
|
|
):
|
|
# execute node
|
|
result = node._run()
|
|
assert isinstance(result, Generator)
|
|
|
|
for item in result:
|
|
if isinstance(item, RunCompletedEvent):
|
|
assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED
|
|
assert item.run_result.process_data is not None
|
|
assert item.run_result.outputs is not None
|
|
assert item.run_result.outputs.get("text") is not None
|
|
assert item.run_result.outputs.get("usage", {})["total_tokens"] > 0
|
|
|
|
|
|
@pytest.mark.parametrize("setup_code_executor_mock", [["none"]], indirect=True)
|
|
def test_execute_llm_with_jinja2(flask_req_ctx, setup_code_executor_mock):
|
|
"""
|
|
Test execute LLM node with jinja2
|
|
"""
|
|
node = init_llm_node(
|
|
config={
|
|
"id": "llm",
|
|
"data": {
|
|
"title": "123",
|
|
"type": "llm",
|
|
"model": {"provider": "openai", "name": "gpt-3.5-turbo", "mode": "chat", "completion_params": {}},
|
|
"prompt_config": {
|
|
"jinja2_variables": [
|
|
{"variable": "sys_query", "value_selector": ["sys", "query"]},
|
|
{"variable": "output", "value_selector": ["abc", "output"]},
|
|
]
|
|
},
|
|
"prompt_template": [
|
|
{
|
|
"role": "system",
|
|
"text": "you are a helpful assistant.\ntoday's weather is {{#abc.output#}}",
|
|
"jinja2_text": "you are a helpful assistant.\ntoday's weather is {{output}}.",
|
|
"edition_type": "jinja2",
|
|
},
|
|
{
|
|
"role": "user",
|
|
"text": "{{#sys.query#}}",
|
|
"jinja2_text": "{{sys_query}}",
|
|
"edition_type": "basic",
|
|
},
|
|
],
|
|
"memory": None,
|
|
"context": {"enabled": False},
|
|
"vision": {"enabled": False},
|
|
},
|
|
},
|
|
)
|
|
|
|
# Mock db.session.close()
|
|
db.session.close = MagicMock()
|
|
|
|
# Create a proper LLM result with real entities
|
|
mock_usage = LLMUsage(
|
|
prompt_tokens=30,
|
|
prompt_unit_price=Decimal("0.001"),
|
|
prompt_price_unit=Decimal("1000"),
|
|
prompt_price=Decimal("0.00003"),
|
|
completion_tokens=20,
|
|
completion_unit_price=Decimal("0.002"),
|
|
completion_price_unit=Decimal("1000"),
|
|
completion_price=Decimal("0.00004"),
|
|
total_tokens=50,
|
|
total_price=Decimal("0.00007"),
|
|
currency="USD",
|
|
latency=0.5,
|
|
)
|
|
|
|
mock_message = AssistantPromptMessage(content="Test response: sunny weather and what's the weather today?")
|
|
|
|
mock_llm_result = LLMResult(
|
|
model="gpt-3.5-turbo",
|
|
prompt_messages=[],
|
|
message=mock_message,
|
|
usage=mock_usage,
|
|
)
|
|
|
|
# Create a simple mock model instance that doesn't call real providers
|
|
mock_model_instance = MagicMock()
|
|
mock_model_instance.invoke_llm.return_value = mock_llm_result
|
|
|
|
# Create a simple mock model config with required attributes
|
|
mock_model_config = MagicMock()
|
|
mock_model_config.mode = "chat"
|
|
mock_model_config.provider = "openai"
|
|
mock_model_config.model = "gpt-3.5-turbo"
|
|
mock_model_config.provider_model_bundle.configuration.tenant_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056b"
|
|
|
|
# Mock the _fetch_model_config method
|
|
def mock_fetch_model_config_func(_node_data_model):
|
|
return mock_model_instance, mock_model_config
|
|
|
|
# Also mock ModelManager.get_model_instance to avoid database calls
|
|
def mock_get_model_instance(_self, **kwargs):
|
|
return mock_model_instance
|
|
|
|
with (
|
|
patch.object(node, "_fetch_model_config", mock_fetch_model_config_func),
|
|
patch("core.model_manager.ModelManager.get_model_instance", mock_get_model_instance),
|
|
):
|
|
# execute node
|
|
result = node._run()
|
|
|
|
for item in result:
|
|
if isinstance(item, RunCompletedEvent):
|
|
assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED
|
|
assert item.run_result.process_data is not None
|
|
assert "sunny" in json.dumps(item.run_result.process_data)
|
|
assert "what's the weather today?" in json.dumps(item.run_result.process_data)
|
|
|
|
|
|
def test_extract_json():
|
|
llm_texts = [
|
|
'<think>\n\n</think>{"name": "test", "age": 123', # resoning model (deepseek-r1)
|
|
'{"name":"test","age":123}', # json schema model (gpt-4o)
|
|
'{\n "name": "test",\n "age": 123\n}', # small model (llama-3.2-1b)
|
|
'```json\n{"name": "test", "age": 123}\n```', # json markdown (deepseek-chat)
|
|
'{"name":"test",age:123}', # without quotes (qwen-2.5-0.5b)
|
|
]
|
|
result = {"name": "test", "age": 123}
|
|
assert all(_parse_structured_output(item) == result for item in llm_texts)
|