Yeuoly 0cb00d5fd2
refactor: move structured output support outside LLM Node (#21565)
Co-authored-by: Novice <novice12185727@gmail.com>
2025-06-27 14:55:31 +08:00

290 lines
11 KiB
Python

import json
import os
import time
import uuid
from collections.abc import Generator
from decimal import Decimal
from unittest.mock import MagicMock, patch
import pytest
from core.app.entities.app_invoke_entities import InvokeFrom
from core.llm_generator.output_parser.structured_output import _parse_structured_output
from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
from core.model_runtime.entities.message_entities import AssistantPromptMessage
from core.workflow.entities.variable_pool import VariablePool
from core.workflow.entities.workflow_node_execution import WorkflowNodeExecutionStatus
from core.workflow.enums import SystemVariableKey
from core.workflow.graph_engine.entities.graph import Graph
from core.workflow.graph_engine.entities.graph_init_params import GraphInitParams
from core.workflow.graph_engine.entities.graph_runtime_state import GraphRuntimeState
from core.workflow.nodes.event import RunCompletedEvent
from core.workflow.nodes.llm.node import LLMNode
from extensions.ext_database import db
from models.enums import UserFrom
from models.workflow import WorkflowType
"""FOR MOCK FIXTURES, DO NOT REMOVE"""
from tests.integration_tests.model_runtime.__mock.plugin_daemon import setup_model_mock
from tests.integration_tests.workflow.nodes.__mock.code_executor import setup_code_executor_mock
def init_llm_node(config: dict) -> LLMNode:
graph_config = {
"edges": [
{
"id": "start-source-next-target",
"source": "start",
"target": "llm",
},
],
"nodes": [{"data": {"type": "start"}, "id": "start"}, config],
}
graph = Graph.init(graph_config=graph_config)
# Use proper UUIDs for database compatibility
tenant_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056b"
app_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056c"
workflow_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056d"
user_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056e"
init_params = GraphInitParams(
tenant_id=tenant_id,
app_id=app_id,
workflow_type=WorkflowType.WORKFLOW,
workflow_id=workflow_id,
graph_config=graph_config,
user_id=user_id,
user_from=UserFrom.ACCOUNT,
invoke_from=InvokeFrom.DEBUGGER,
call_depth=0,
)
# construct variable pool
variable_pool = VariablePool(
system_variables={
SystemVariableKey.QUERY: "what's the weather today?",
SystemVariableKey.FILES: [],
SystemVariableKey.CONVERSATION_ID: "abababa",
SystemVariableKey.USER_ID: "aaa",
},
user_inputs={},
environment_variables=[],
conversation_variables=[],
)
variable_pool.add(["abc", "output"], "sunny")
node = LLMNode(
id=str(uuid.uuid4()),
graph_init_params=init_params,
graph=graph,
graph_runtime_state=GraphRuntimeState(variable_pool=variable_pool, start_at=time.perf_counter()),
config=config,
)
return node
def test_execute_llm(flask_req_ctx):
node = init_llm_node(
config={
"id": "llm",
"data": {
"title": "123",
"type": "llm",
"model": {
"provider": "langgenius/openai/openai",
"name": "gpt-3.5-turbo",
"mode": "chat",
"completion_params": {},
},
"prompt_template": [
{
"role": "system",
"text": "you are a helpful assistant.\ntoday's weather is {{#abc.output#}}.",
},
{"role": "user", "text": "{{#sys.query#}}"},
],
"memory": None,
"context": {"enabled": False},
"vision": {"enabled": False},
},
},
)
credentials = {"openai_api_key": os.environ.get("OPENAI_API_KEY")}
# Create a proper LLM result with real entities
mock_usage = LLMUsage(
prompt_tokens=30,
prompt_unit_price=Decimal("0.001"),
prompt_price_unit=Decimal("1000"),
prompt_price=Decimal("0.00003"),
completion_tokens=20,
completion_unit_price=Decimal("0.002"),
completion_price_unit=Decimal("1000"),
completion_price=Decimal("0.00004"),
total_tokens=50,
total_price=Decimal("0.00007"),
currency="USD",
latency=0.5,
)
mock_message = AssistantPromptMessage(content="This is a test response from the mocked LLM.")
mock_llm_result = LLMResult(
model="gpt-3.5-turbo",
prompt_messages=[],
message=mock_message,
usage=mock_usage,
)
# Create a simple mock model instance that doesn't call real providers
mock_model_instance = MagicMock()
mock_model_instance.invoke_llm.return_value = mock_llm_result
# Create a simple mock model config with required attributes
mock_model_config = MagicMock()
mock_model_config.mode = "chat"
mock_model_config.provider = "langgenius/openai/openai"
mock_model_config.model = "gpt-3.5-turbo"
mock_model_config.provider_model_bundle.configuration.tenant_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056b"
# Mock the _fetch_model_config method
def mock_fetch_model_config_func(_node_data_model):
return mock_model_instance, mock_model_config
# Also mock ModelManager.get_model_instance to avoid database calls
def mock_get_model_instance(_self, **kwargs):
return mock_model_instance
with (
patch.object(node, "_fetch_model_config", mock_fetch_model_config_func),
patch("core.model_manager.ModelManager.get_model_instance", mock_get_model_instance),
):
# execute node
result = node._run()
assert isinstance(result, Generator)
for item in result:
if isinstance(item, RunCompletedEvent):
assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED
assert item.run_result.process_data is not None
assert item.run_result.outputs is not None
assert item.run_result.outputs.get("text") is not None
assert item.run_result.outputs.get("usage", {})["total_tokens"] > 0
@pytest.mark.parametrize("setup_code_executor_mock", [["none"]], indirect=True)
def test_execute_llm_with_jinja2(flask_req_ctx, setup_code_executor_mock):
"""
Test execute LLM node with jinja2
"""
node = init_llm_node(
config={
"id": "llm",
"data": {
"title": "123",
"type": "llm",
"model": {"provider": "openai", "name": "gpt-3.5-turbo", "mode": "chat", "completion_params": {}},
"prompt_config": {
"jinja2_variables": [
{"variable": "sys_query", "value_selector": ["sys", "query"]},
{"variable": "output", "value_selector": ["abc", "output"]},
]
},
"prompt_template": [
{
"role": "system",
"text": "you are a helpful assistant.\ntoday's weather is {{#abc.output#}}",
"jinja2_text": "you are a helpful assistant.\ntoday's weather is {{output}}.",
"edition_type": "jinja2",
},
{
"role": "user",
"text": "{{#sys.query#}}",
"jinja2_text": "{{sys_query}}",
"edition_type": "basic",
},
],
"memory": None,
"context": {"enabled": False},
"vision": {"enabled": False},
},
},
)
# Mock db.session.close()
db.session.close = MagicMock()
# Create a proper LLM result with real entities
mock_usage = LLMUsage(
prompt_tokens=30,
prompt_unit_price=Decimal("0.001"),
prompt_price_unit=Decimal("1000"),
prompt_price=Decimal("0.00003"),
completion_tokens=20,
completion_unit_price=Decimal("0.002"),
completion_price_unit=Decimal("1000"),
completion_price=Decimal("0.00004"),
total_tokens=50,
total_price=Decimal("0.00007"),
currency="USD",
latency=0.5,
)
mock_message = AssistantPromptMessage(content="Test response: sunny weather and what's the weather today?")
mock_llm_result = LLMResult(
model="gpt-3.5-turbo",
prompt_messages=[],
message=mock_message,
usage=mock_usage,
)
# Create a simple mock model instance that doesn't call real providers
mock_model_instance = MagicMock()
mock_model_instance.invoke_llm.return_value = mock_llm_result
# Create a simple mock model config with required attributes
mock_model_config = MagicMock()
mock_model_config.mode = "chat"
mock_model_config.provider = "openai"
mock_model_config.model = "gpt-3.5-turbo"
mock_model_config.provider_model_bundle.configuration.tenant_id = "9d2074fc-6f86-45a9-b09d-6ecc63b9056b"
# Mock the _fetch_model_config method
def mock_fetch_model_config_func(_node_data_model):
return mock_model_instance, mock_model_config
# Also mock ModelManager.get_model_instance to avoid database calls
def mock_get_model_instance(_self, **kwargs):
return mock_model_instance
with (
patch.object(node, "_fetch_model_config", mock_fetch_model_config_func),
patch("core.model_manager.ModelManager.get_model_instance", mock_get_model_instance),
):
# execute node
result = node._run()
for item in result:
if isinstance(item, RunCompletedEvent):
assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED
assert item.run_result.process_data is not None
assert "sunny" in json.dumps(item.run_result.process_data)
assert "what's the weather today?" in json.dumps(item.run_result.process_data)
def test_extract_json():
llm_texts = [
'<think>\n\n</think>{"name": "test", "age": 123', # resoning model (deepseek-r1)
'{"name":"test","age":123}', # json schema model (gpt-4o)
'{\n "name": "test",\n "age": 123\n}', # small model (llama-3.2-1b)
'```json\n{"name": "test", "age": 123}\n```', # json markdown (deepseek-chat)
'{"name":"test",age:123}', # without quotes (qwen-2.5-0.5b)
]
result = {"name": "test", "age": 123}
assert all(_parse_structured_output(item) == result for item in llm_texts)