mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-30 18:33:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			868 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			868 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import concurrent.futures
 | |
| import datetime
 | |
| import json
 | |
| import logging
 | |
| import re
 | |
| import threading
 | |
| import time
 | |
| import uuid
 | |
| from typing import Optional, cast
 | |
| 
 | |
| from flask import Flask, current_app
 | |
| from flask_login import current_user
 | |
| from sqlalchemy.orm.exc import ObjectDeletedError
 | |
| 
 | |
| from core.docstore.dataset_docstore import DatasetDocumentStore
 | |
| from core.errors.error import ProviderTokenNotInitError
 | |
| from core.llm_generator.llm_generator import LLMGenerator
 | |
| from core.model_manager import ModelInstance, ModelManager
 | |
| from core.model_runtime.entities.model_entities import ModelType, PriceType
 | |
| from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
 | |
| from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
 | |
| from core.rag.datasource.keyword.keyword_factory import Keyword
 | |
| from core.rag.extractor.entity.extract_setting import ExtractSetting
 | |
| from core.rag.index_processor.index_processor_base import BaseIndexProcessor
 | |
| from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
 | |
| from core.rag.models.document import Document
 | |
| from core.splitter.fixed_text_splitter import EnhanceRecursiveCharacterTextSplitter, FixedRecursiveCharacterTextSplitter
 | |
| from core.splitter.text_splitter import TextSplitter
 | |
| from extensions.ext_database import db
 | |
| from extensions.ext_redis import redis_client
 | |
| from extensions.ext_storage import storage
 | |
| from libs import helper
 | |
| from models.dataset import Dataset, DatasetProcessRule, DocumentSegment
 | |
| from models.dataset import Document as DatasetDocument
 | |
| from models.model import UploadFile
 | |
| from services.feature_service import FeatureService
 | |
| 
 | |
| 
 | |
| class IndexingRunner:
 | |
| 
 | |
|     def __init__(self):
 | |
|         self.storage = storage
 | |
|         self.model_manager = ModelManager()
 | |
| 
 | |
|     def run(self, dataset_documents: list[DatasetDocument]):
 | |
|         """Run the indexing process."""
 | |
|         for dataset_document in dataset_documents:
 | |
|             try:
 | |
|                 # get dataset
 | |
|                 dataset = Dataset.query.filter_by(
 | |
|                     id=dataset_document.dataset_id
 | |
|                 ).first()
 | |
| 
 | |
|                 if not dataset:
 | |
|                     raise ValueError("no dataset found")
 | |
| 
 | |
|                 # get the process rule
 | |
|                 processing_rule = db.session.query(DatasetProcessRule). \
 | |
|                     filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
 | |
|                     first()
 | |
|                 index_type = dataset_document.doc_form
 | |
|                 index_processor = IndexProcessorFactory(index_type).init_index_processor()
 | |
|                 # extract
 | |
|                 text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
 | |
| 
 | |
|                 # transform
 | |
|                 documents = self._transform(index_processor, dataset, text_docs, dataset_document.doc_language,
 | |
|                                             processing_rule.to_dict())
 | |
|                 # save segment
 | |
|                 self._load_segments(dataset, dataset_document, documents)
 | |
| 
 | |
|                 # load
 | |
|                 self._load(
 | |
|                     index_processor=index_processor,
 | |
|                     dataset=dataset,
 | |
|                     dataset_document=dataset_document,
 | |
|                     documents=documents
 | |
|                 )
 | |
|             except DocumentIsPausedException:
 | |
|                 raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
 | |
|             except ProviderTokenNotInitError as e:
 | |
|                 dataset_document.indexing_status = 'error'
 | |
|                 dataset_document.error = str(e.description)
 | |
|                 dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | |
|                 db.session.commit()
 | |
|             except ObjectDeletedError:
 | |
|                 logging.warning('Document deleted, document id: {}'.format(dataset_document.id))
 | |
|             except Exception as e:
 | |
|                 logging.exception("consume document failed")
 | |
|                 dataset_document.indexing_status = 'error'
 | |
|                 dataset_document.error = str(e)
 | |
|                 dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | |
|                 db.session.commit()
 | |
| 
 | |
|     def run_in_splitting_status(self, dataset_document: DatasetDocument):
 | |
|         """Run the indexing process when the index_status is splitting."""
 | |
|         try:
 | |
|             # get dataset
 | |
|             dataset = Dataset.query.filter_by(
 | |
|                 id=dataset_document.dataset_id
 | |
|             ).first()
 | |
| 
 | |
|             if not dataset:
 | |
|                 raise ValueError("no dataset found")
 | |
| 
 | |
|             # get exist document_segment list and delete
 | |
|             document_segments = DocumentSegment.query.filter_by(
 | |
|                 dataset_id=dataset.id,
 | |
|                 document_id=dataset_document.id
 | |
|             ).all()
 | |
| 
 | |
|             for document_segment in document_segments:
 | |
|                 db.session.delete(document_segment)
 | |
|             db.session.commit()
 | |
|             # get the process rule
 | |
|             processing_rule = db.session.query(DatasetProcessRule). \
 | |
|                 filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
 | |
|                 first()
 | |
| 
 | |
|             index_type = dataset_document.doc_form
 | |
|             index_processor = IndexProcessorFactory(index_type).init_index_processor()
 | |
|             # extract
 | |
|             text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
 | |
| 
 | |
|             # transform
 | |
|             documents = self._transform(index_processor, dataset, text_docs, dataset_document.doc_language,
 | |
|                                         processing_rule.to_dict())
 | |
|             # save segment
 | |
|             self._load_segments(dataset, dataset_document, documents)
 | |
| 
 | |
|             # load
 | |
|             self._load(
 | |
|                 index_processor=index_processor,
 | |
|                 dataset=dataset,
 | |
|                 dataset_document=dataset_document,
 | |
|                 documents=documents
 | |
|             )
 | |
|         except DocumentIsPausedException:
 | |
|             raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
 | |
|         except ProviderTokenNotInitError as e:
 | |
|             dataset_document.indexing_status = 'error'
 | |
|             dataset_document.error = str(e.description)
 | |
|             dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | |
|             db.session.commit()
 | |
|         except Exception as e:
 | |
|             logging.exception("consume document failed")
 | |
|             dataset_document.indexing_status = 'error'
 | |
|             dataset_document.error = str(e)
 | |
|             dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | |
|             db.session.commit()
 | |
| 
 | |
|     def run_in_indexing_status(self, dataset_document: DatasetDocument):
 | |
|         """Run the indexing process when the index_status is indexing."""
 | |
|         try:
 | |
|             # get dataset
 | |
|             dataset = Dataset.query.filter_by(
 | |
|                 id=dataset_document.dataset_id
 | |
|             ).first()
 | |
| 
 | |
|             if not dataset:
 | |
|                 raise ValueError("no dataset found")
 | |
| 
 | |
|             # get exist document_segment list and delete
 | |
|             document_segments = DocumentSegment.query.filter_by(
 | |
|                 dataset_id=dataset.id,
 | |
|                 document_id=dataset_document.id
 | |
|             ).all()
 | |
| 
 | |
|             documents = []
 | |
|             if document_segments:
 | |
|                 for document_segment in document_segments:
 | |
|                     # transform segment to node
 | |
|                     if document_segment.status != "completed":
 | |
|                         document = Document(
 | |
|                             page_content=document_segment.content,
 | |
|                             metadata={
 | |
|                                 "doc_id": document_segment.index_node_id,
 | |
|                                 "doc_hash": document_segment.index_node_hash,
 | |
|                                 "document_id": document_segment.document_id,
 | |
|                                 "dataset_id": document_segment.dataset_id,
 | |
|                             }
 | |
|                         )
 | |
| 
 | |
|                         documents.append(document)
 | |
| 
 | |
|             # build index
 | |
|             # get the process rule
 | |
|             processing_rule = db.session.query(DatasetProcessRule). \
 | |
|                 filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
 | |
|                 first()
 | |
| 
 | |
|             index_type = dataset_document.doc_form
 | |
|             index_processor = IndexProcessorFactory(index_type).init_index_processor()
 | |
|             self._load(
 | |
|                 index_processor=index_processor,
 | |
|                 dataset=dataset,
 | |
|                 dataset_document=dataset_document,
 | |
|                 documents=documents
 | |
|             )
 | |
|         except DocumentIsPausedException:
 | |
|             raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
 | |
|         except ProviderTokenNotInitError as e:
 | |
|             dataset_document.indexing_status = 'error'
 | |
|             dataset_document.error = str(e.description)
 | |
|             dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | |
|             db.session.commit()
 | |
|         except Exception as e:
 | |
|             logging.exception("consume document failed")
 | |
|             dataset_document.indexing_status = 'error'
 | |
|             dataset_document.error = str(e)
 | |
|             dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | |
|             db.session.commit()
 | |
| 
 | |
|     def indexing_estimate(self, tenant_id: str, extract_settings: list[ExtractSetting], tmp_processing_rule: dict,
 | |
|                           doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
 | |
|                           indexing_technique: str = 'economy') -> dict:
 | |
|         """
 | |
|         Estimate the indexing for the document.
 | |
|         """
 | |
|         # check document limit
 | |
|         features = FeatureService.get_features(tenant_id)
 | |
|         if features.billing.enabled:
 | |
|             count = len(extract_settings)
 | |
|             batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
 | |
|             if count > batch_upload_limit:
 | |
|                 raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
 | |
| 
 | |
|         embedding_model_instance = None
 | |
|         if dataset_id:
 | |
|             dataset = Dataset.query.filter_by(
 | |
|                 id=dataset_id
 | |
|             ).first()
 | |
|             if not dataset:
 | |
|                 raise ValueError('Dataset not found.')
 | |
|             if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
 | |
|                 if dataset.embedding_model_provider:
 | |
|                     embedding_model_instance = self.model_manager.get_model_instance(
 | |
|                         tenant_id=tenant_id,
 | |
|                         provider=dataset.embedding_model_provider,
 | |
|                         model_type=ModelType.TEXT_EMBEDDING,
 | |
|                         model=dataset.embedding_model
 | |
|                     )
 | |
|                 else:
 | |
|                     embedding_model_instance = self.model_manager.get_default_model_instance(
 | |
|                         tenant_id=tenant_id,
 | |
|                         model_type=ModelType.TEXT_EMBEDDING,
 | |
|                     )
 | |
|         else:
 | |
|             if indexing_technique == 'high_quality':
 | |
|                 embedding_model_instance = self.model_manager.get_default_model_instance(
 | |
|                     tenant_id=tenant_id,
 | |
|                     model_type=ModelType.TEXT_EMBEDDING,
 | |
|                 )
 | |
|         tokens = 0
 | |
|         preview_texts = []
 | |
|         total_segments = 0
 | |
|         total_price = 0
 | |
|         currency = 'USD'
 | |
|         index_type = doc_form
 | |
|         index_processor = IndexProcessorFactory(index_type).init_index_processor()
 | |
|         all_text_docs = []
 | |
|         for extract_setting in extract_settings:
 | |
|             # extract
 | |
|             text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"])
 | |
|             all_text_docs.extend(text_docs)
 | |
|             processing_rule = DatasetProcessRule(
 | |
|                 mode=tmp_processing_rule["mode"],
 | |
|                 rules=json.dumps(tmp_processing_rule["rules"])
 | |
|             )
 | |
| 
 | |
|             # get splitter
 | |
|             splitter = self._get_splitter(processing_rule, embedding_model_instance)
 | |
| 
 | |
|             # split to documents
 | |
|             documents = self._split_to_documents_for_estimate(
 | |
|                 text_docs=text_docs,
 | |
|                 splitter=splitter,
 | |
|                 processing_rule=processing_rule
 | |
|             )
 | |
| 
 | |
|             total_segments += len(documents)
 | |
|             for document in documents:
 | |
|                 if len(preview_texts) < 5:
 | |
|                     preview_texts.append(document.page_content)
 | |
|                 if indexing_technique == 'high_quality' or embedding_model_instance:
 | |
|                     embedding_model_type_instance = embedding_model_instance.model_type_instance
 | |
|                     embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
 | |
|                     tokens += embedding_model_type_instance.get_num_tokens(
 | |
|                         model=embedding_model_instance.model,
 | |
|                         credentials=embedding_model_instance.credentials,
 | |
|                         texts=[self.filter_string(document.page_content)]
 | |
|                     )
 | |
| 
 | |
|         if doc_form and doc_form == 'qa_model':
 | |
|             model_instance = self.model_manager.get_default_model_instance(
 | |
|                 tenant_id=tenant_id,
 | |
|                 model_type=ModelType.LLM
 | |
|             )
 | |
| 
 | |
|             model_type_instance = model_instance.model_type_instance
 | |
|             model_type_instance = cast(LargeLanguageModel, model_type_instance)
 | |
| 
 | |
|             if len(preview_texts) > 0:
 | |
|                 # qa model document
 | |
|                 response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
 | |
|                                                              doc_language)
 | |
|                 document_qa_list = self.format_split_text(response)
 | |
|                 price_info = model_type_instance.get_price(
 | |
|                     model=model_instance.model,
 | |
|                     credentials=model_instance.credentials,
 | |
|                     price_type=PriceType.INPUT,
 | |
|                     tokens=total_segments * 2000,
 | |
|                 )
 | |
|                 return {
 | |
|                     "total_segments": total_segments * 20,
 | |
|                     "tokens": total_segments * 2000,
 | |
|                     "total_price": '{:f}'.format(price_info.total_amount),
 | |
|                     "currency": price_info.currency,
 | |
|                     "qa_preview": document_qa_list,
 | |
|                     "preview": preview_texts
 | |
|                 }
 | |
|         if embedding_model_instance:
 | |
|             embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_instance.model_type_instance)
 | |
|             embedding_price_info = embedding_model_type_instance.get_price(
 | |
|                 model=embedding_model_instance.model,
 | |
|                 credentials=embedding_model_instance.credentials,
 | |
|                 price_type=PriceType.INPUT,
 | |
|                 tokens=tokens
 | |
|             )
 | |
|             total_price = '{:f}'.format(embedding_price_info.total_amount)
 | |
|             currency = embedding_price_info.currency
 | |
|         return {
 | |
|             "total_segments": total_segments,
 | |
|             "tokens": tokens,
 | |
|             "total_price": total_price,
 | |
|             "currency": currency,
 | |
|             "preview": preview_texts
 | |
|         }
 | |
| 
 | |
|     def _extract(self, index_processor: BaseIndexProcessor, dataset_document: DatasetDocument, process_rule: dict) \
 | |
|             -> list[Document]:
 | |
|         # load file
 | |
|         if dataset_document.data_source_type not in ["upload_file", "notion_import"]:
 | |
|             return []
 | |
| 
 | |
|         data_source_info = dataset_document.data_source_info_dict
 | |
|         text_docs = []
 | |
|         if dataset_document.data_source_type == 'upload_file':
 | |
|             if not data_source_info or 'upload_file_id' not in data_source_info:
 | |
|                 raise ValueError("no upload file found")
 | |
| 
 | |
|             file_detail = db.session.query(UploadFile). \
 | |
|                 filter(UploadFile.id == data_source_info['upload_file_id']). \
 | |
|                 one_or_none()
 | |
| 
 | |
|             if file_detail:
 | |
|                 extract_setting = ExtractSetting(
 | |
|                     datasource_type="upload_file",
 | |
|                     upload_file=file_detail,
 | |
|                     document_model=dataset_document.doc_form
 | |
|                 )
 | |
|                 text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode'])
 | |
|         elif dataset_document.data_source_type == 'notion_import':
 | |
|             if (not data_source_info or 'notion_workspace_id' not in data_source_info
 | |
|                     or 'notion_page_id' not in data_source_info):
 | |
|                 raise ValueError("no notion import info found")
 | |
|             extract_setting = ExtractSetting(
 | |
|                 datasource_type="notion_import",
 | |
|                 notion_info={
 | |
|                     "notion_workspace_id": data_source_info['notion_workspace_id'],
 | |
|                     "notion_obj_id": data_source_info['notion_page_id'],
 | |
|                     "notion_page_type": data_source_info['type'],
 | |
|                     "document": dataset_document,
 | |
|                     "tenant_id": dataset_document.tenant_id
 | |
|                 },
 | |
|                 document_model=dataset_document.doc_form
 | |
|             )
 | |
|             text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode'])
 | |
|         # update document status to splitting
 | |
|         self._update_document_index_status(
 | |
|             document_id=dataset_document.id,
 | |
|             after_indexing_status="splitting",
 | |
|             extra_update_params={
 | |
|                 DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]),
 | |
|                 DatasetDocument.parsing_completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | |
|             }
 | |
|         )
 | |
| 
 | |
|         # replace doc id to document model id
 | |
|         text_docs = cast(list[Document], text_docs)
 | |
|         for text_doc in text_docs:
 | |
|             text_doc.metadata['document_id'] = dataset_document.id
 | |
|             text_doc.metadata['dataset_id'] = dataset_document.dataset_id
 | |
| 
 | |
|         return text_docs
 | |
| 
 | |
|     def filter_string(self, text):
 | |
|         text = re.sub(r'<\|', '<', text)
 | |
|         text = re.sub(r'\|>', '>', text)
 | |
|         text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\xEF\xBF\xBE]', '', text)
 | |
|         # Unicode  U+FFFE
 | |
|         text = re.sub('\uFFFE', '', text)
 | |
|         return text
 | |
| 
 | |
|     def _get_splitter(self, processing_rule: DatasetProcessRule,
 | |
|                       embedding_model_instance: Optional[ModelInstance]) -> TextSplitter:
 | |
|         """
 | |
|         Get the NodeParser object according to the processing rule.
 | |
|         """
 | |
|         if processing_rule.mode == "custom":
 | |
|             # The user-defined segmentation rule
 | |
|             rules = json.loads(processing_rule.rules)
 | |
|             segmentation = rules["segmentation"]
 | |
|             if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
 | |
|                 raise ValueError("Custom segment length should be between 50 and 1000.")
 | |
| 
 | |
|             separator = segmentation["separator"]
 | |
|             if separator:
 | |
|                 separator = separator.replace('\\n', '\n')
 | |
| 
 | |
|             if 'chunk_overlap' in segmentation and segmentation['chunk_overlap']:
 | |
|                 chunk_overlap = segmentation['chunk_overlap']
 | |
|             else:
 | |
|                 chunk_overlap = 0
 | |
| 
 | |
|             character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
 | |
|                 chunk_size=segmentation["max_tokens"],
 | |
|                 chunk_overlap=chunk_overlap,
 | |
|                 fixed_separator=separator,
 | |
|                 separators=["\n\n", "。", ".", " ", ""],
 | |
|                 embedding_model_instance=embedding_model_instance
 | |
|             )
 | |
|         else:
 | |
|             # Automatic segmentation
 | |
|             character_splitter = EnhanceRecursiveCharacterTextSplitter.from_encoder(
 | |
|                 chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
 | |
|                 chunk_overlap=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['chunk_overlap'],
 | |
|                 separators=["\n\n", "。", ".", " ", ""],
 | |
|                 embedding_model_instance=embedding_model_instance
 | |
|             )
 | |
| 
 | |
|         return character_splitter
 | |
| 
 | |
|     def _step_split(self, text_docs: list[Document], splitter: TextSplitter,
 | |
|                     dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
 | |
|             -> list[Document]:
 | |
|         """
 | |
|         Split the text documents into documents and save them to the document segment.
 | |
|         """
 | |
|         documents = self._split_to_documents(
 | |
|             text_docs=text_docs,
 | |
|             splitter=splitter,
 | |
|             processing_rule=processing_rule,
 | |
|             tenant_id=dataset.tenant_id,
 | |
|             document_form=dataset_document.doc_form,
 | |
|             document_language=dataset_document.doc_language
 | |
|         )
 | |
| 
 | |
|         # save node to document segment
 | |
|         doc_store = DatasetDocumentStore(
 | |
|             dataset=dataset,
 | |
|             user_id=dataset_document.created_by,
 | |
|             document_id=dataset_document.id
 | |
|         )
 | |
| 
 | |
|         # add document segments
 | |
|         doc_store.add_documents(documents)
 | |
| 
 | |
|         # update document status to indexing
 | |
|         cur_time = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | |
|         self._update_document_index_status(
 | |
|             document_id=dataset_document.id,
 | |
|             after_indexing_status="indexing",
 | |
|             extra_update_params={
 | |
|                 DatasetDocument.cleaning_completed_at: cur_time,
 | |
|                 DatasetDocument.splitting_completed_at: cur_time,
 | |
|             }
 | |
|         )
 | |
| 
 | |
|         # update segment status to indexing
 | |
|         self._update_segments_by_document(
 | |
|             dataset_document_id=dataset_document.id,
 | |
|             update_params={
 | |
|                 DocumentSegment.status: "indexing",
 | |
|                 DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | |
|             }
 | |
|         )
 | |
| 
 | |
|         return documents
 | |
| 
 | |
|     def _split_to_documents(self, text_docs: list[Document], splitter: TextSplitter,
 | |
|                             processing_rule: DatasetProcessRule, tenant_id: str,
 | |
|                             document_form: str, document_language: str) -> list[Document]:
 | |
|         """
 | |
|         Split the text documents into nodes.
 | |
|         """
 | |
|         all_documents = []
 | |
|         all_qa_documents = []
 | |
|         for text_doc in text_docs:
 | |
|             # document clean
 | |
|             document_text = self._document_clean(text_doc.page_content, processing_rule)
 | |
|             text_doc.page_content = document_text
 | |
| 
 | |
|             # parse document to nodes
 | |
|             documents = splitter.split_documents([text_doc])
 | |
|             split_documents = []
 | |
|             for document_node in documents:
 | |
| 
 | |
|                 if document_node.page_content.strip():
 | |
|                     doc_id = str(uuid.uuid4())
 | |
|                     hash = helper.generate_text_hash(document_node.page_content)
 | |
|                     document_node.metadata['doc_id'] = doc_id
 | |
|                     document_node.metadata['doc_hash'] = hash
 | |
|                     # delete Spliter character
 | |
|                     page_content = document_node.page_content
 | |
|                     if page_content.startswith(".") or page_content.startswith("。"):
 | |
|                         page_content = page_content[1:]
 | |
|                     else:
 | |
|                         page_content = page_content
 | |
|                     document_node.page_content = page_content
 | |
| 
 | |
|                     if document_node.page_content:
 | |
|                         split_documents.append(document_node)
 | |
|             all_documents.extend(split_documents)
 | |
|         # processing qa document
 | |
|         if document_form == 'qa_model':
 | |
|             for i in range(0, len(all_documents), 10):
 | |
|                 threads = []
 | |
|                 sub_documents = all_documents[i:i + 10]
 | |
|                 for doc in sub_documents:
 | |
|                     document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
 | |
|                         'flask_app': current_app._get_current_object(),
 | |
|                         'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents,
 | |
|                         'document_language': document_language})
 | |
|                     threads.append(document_format_thread)
 | |
|                     document_format_thread.start()
 | |
|                 for thread in threads:
 | |
|                     thread.join()
 | |
|             return all_qa_documents
 | |
|         return all_documents
 | |
| 
 | |
|     def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
 | |
|         format_documents = []
 | |
|         if document_node.page_content is None or not document_node.page_content.strip():
 | |
|             return
 | |
|         with flask_app.app_context():
 | |
|             try:
 | |
|                 # qa model document
 | |
|                 response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
 | |
|                 document_qa_list = self.format_split_text(response)
 | |
|                 qa_documents = []
 | |
|                 for result in document_qa_list:
 | |
|                     qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
 | |
|                     doc_id = str(uuid.uuid4())
 | |
|                     hash = helper.generate_text_hash(result['question'])
 | |
|                     qa_document.metadata['answer'] = result['answer']
 | |
|                     qa_document.metadata['doc_id'] = doc_id
 | |
|                     qa_document.metadata['doc_hash'] = hash
 | |
|                     qa_documents.append(qa_document)
 | |
|                 format_documents.extend(qa_documents)
 | |
|             except Exception as e:
 | |
|                 logging.exception(e)
 | |
| 
 | |
|             all_qa_documents.extend(format_documents)
 | |
| 
 | |
|     def _split_to_documents_for_estimate(self, text_docs: list[Document], splitter: TextSplitter,
 | |
|                                          processing_rule: DatasetProcessRule) -> list[Document]:
 | |
|         """
 | |
|         Split the text documents into nodes.
 | |
|         """
 | |
|         all_documents = []
 | |
|         for text_doc in text_docs:
 | |
|             # document clean
 | |
|             document_text = self._document_clean(text_doc.page_content, processing_rule)
 | |
|             text_doc.page_content = document_text
 | |
| 
 | |
|             # parse document to nodes
 | |
|             documents = splitter.split_documents([text_doc])
 | |
| 
 | |
|             split_documents = []
 | |
|             for document in documents:
 | |
|                 if document.page_content is None or not document.page_content.strip():
 | |
|                     continue
 | |
|                 doc_id = str(uuid.uuid4())
 | |
|                 hash = helper.generate_text_hash(document.page_content)
 | |
| 
 | |
|                 document.metadata['doc_id'] = doc_id
 | |
|                 document.metadata['doc_hash'] = hash
 | |
| 
 | |
|                 split_documents.append(document)
 | |
| 
 | |
|             all_documents.extend(split_documents)
 | |
| 
 | |
|         return all_documents
 | |
| 
 | |
|     def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
 | |
|         """
 | |
|         Clean the document text according to the processing rules.
 | |
|         """
 | |
|         if processing_rule.mode == "automatic":
 | |
|             rules = DatasetProcessRule.AUTOMATIC_RULES
 | |
|         else:
 | |
|             rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
 | |
| 
 | |
|         if 'pre_processing_rules' in rules:
 | |
|             pre_processing_rules = rules["pre_processing_rules"]
 | |
|             for pre_processing_rule in pre_processing_rules:
 | |
|                 if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
 | |
|                     # Remove extra spaces
 | |
|                     pattern = r'\n{3,}'
 | |
|                     text = re.sub(pattern, '\n\n', text)
 | |
|                     pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
 | |
|                     text = re.sub(pattern, ' ', text)
 | |
|                 elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
 | |
|                     # Remove email
 | |
|                     pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
 | |
|                     text = re.sub(pattern, '', text)
 | |
| 
 | |
|                     # Remove URL
 | |
|                     pattern = r'https?://[^\s]+'
 | |
|                     text = re.sub(pattern, '', text)
 | |
| 
 | |
|         return text
 | |
| 
 | |
|     def format_split_text(self, text):
 | |
|         regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)"
 | |
|         matches = re.findall(regex, text, re.UNICODE)
 | |
| 
 | |
|         return [
 | |
|             {
 | |
|                 "question": q,
 | |
|                 "answer": re.sub(r"\n\s*", "\n", a.strip())
 | |
|             }
 | |
|             for q, a in matches if q and a
 | |
|         ]
 | |
| 
 | |
|     def _load(self, index_processor: BaseIndexProcessor, dataset: Dataset,
 | |
|               dataset_document: DatasetDocument, documents: list[Document]) -> None:
 | |
|         """
 | |
|         insert index and update document/segment status to completed
 | |
|         """
 | |
| 
 | |
|         embedding_model_instance = None
 | |
|         if dataset.indexing_technique == 'high_quality':
 | |
|             embedding_model_instance = self.model_manager.get_model_instance(
 | |
|                 tenant_id=dataset.tenant_id,
 | |
|                 provider=dataset.embedding_model_provider,
 | |
|                 model_type=ModelType.TEXT_EMBEDDING,
 | |
|                 model=dataset.embedding_model
 | |
|             )
 | |
| 
 | |
|         # chunk nodes by chunk size
 | |
|         indexing_start_at = time.perf_counter()
 | |
|         tokens = 0
 | |
|         chunk_size = 10
 | |
| 
 | |
|         embedding_model_type_instance = None
 | |
|         if embedding_model_instance:
 | |
|             embedding_model_type_instance = embedding_model_instance.model_type_instance
 | |
|             embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
 | |
|         # create keyword index
 | |
|         create_keyword_thread = threading.Thread(target=self._process_keyword_index,
 | |
|                                                  args=(current_app._get_current_object(),
 | |
|                                                        dataset.id, dataset_document.id, documents))
 | |
|         create_keyword_thread.start()
 | |
|         if dataset.indexing_technique == 'high_quality':
 | |
|             with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
 | |
|                 futures = []
 | |
|                 for i in range(0, len(documents), chunk_size):
 | |
|                     chunk_documents = documents[i:i + chunk_size]
 | |
|                     futures.append(executor.submit(self._process_chunk, current_app._get_current_object(), index_processor,
 | |
|                                                    chunk_documents, dataset,
 | |
|                                                    dataset_document, embedding_model_instance,
 | |
|                                                    embedding_model_type_instance))
 | |
| 
 | |
|                 for future in futures:
 | |
|                     tokens += future.result()
 | |
| 
 | |
|         create_keyword_thread.join()
 | |
|         indexing_end_at = time.perf_counter()
 | |
| 
 | |
|         # update document status to completed
 | |
|         self._update_document_index_status(
 | |
|             document_id=dataset_document.id,
 | |
|             after_indexing_status="completed",
 | |
|             extra_update_params={
 | |
|                 DatasetDocument.tokens: tokens,
 | |
|                 DatasetDocument.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
 | |
|                 DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
 | |
|             }
 | |
|         )
 | |
| 
 | |
|     def _process_keyword_index(self, flask_app, dataset_id, document_id, documents):
 | |
|         with flask_app.app_context():
 | |
|             dataset = Dataset.query.filter_by(id=dataset_id).first()
 | |
|             if not dataset:
 | |
|                 raise ValueError("no dataset found")
 | |
|             keyword = Keyword(dataset)
 | |
|             keyword.create(documents)
 | |
|             if dataset.indexing_technique != 'high_quality':
 | |
|                 document_ids = [document.metadata['doc_id'] for document in documents]
 | |
|                 db.session.query(DocumentSegment).filter(
 | |
|                     DocumentSegment.document_id == document_id,
 | |
|                     DocumentSegment.index_node_id.in_(document_ids),
 | |
|                     DocumentSegment.status == "indexing"
 | |
|                 ).update({
 | |
|                     DocumentSegment.status: "completed",
 | |
|                     DocumentSegment.enabled: True,
 | |
|                     DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | |
|                 })
 | |
| 
 | |
|                 db.session.commit()
 | |
| 
 | |
|     def _process_chunk(self, flask_app, index_processor, chunk_documents, dataset, dataset_document,
 | |
|                        embedding_model_instance, embedding_model_type_instance):
 | |
|         with flask_app.app_context():
 | |
|             # check document is paused
 | |
|             self._check_document_paused_status(dataset_document.id)
 | |
| 
 | |
|             tokens = 0
 | |
|             if dataset.indexing_technique == 'high_quality' or embedding_model_type_instance:
 | |
|                 tokens += sum(
 | |
|                     embedding_model_type_instance.get_num_tokens(
 | |
|                         embedding_model_instance.model,
 | |
|                         embedding_model_instance.credentials,
 | |
|                         [document.page_content]
 | |
|                     )
 | |
|                     for document in chunk_documents
 | |
|                 )
 | |
| 
 | |
|             # load index
 | |
|             index_processor.load(dataset, chunk_documents, with_keywords=False)
 | |
| 
 | |
|             document_ids = [document.metadata['doc_id'] for document in chunk_documents]
 | |
|             db.session.query(DocumentSegment).filter(
 | |
|                 DocumentSegment.document_id == dataset_document.id,
 | |
|                 DocumentSegment.index_node_id.in_(document_ids),
 | |
|                 DocumentSegment.status == "indexing"
 | |
|             ).update({
 | |
|                 DocumentSegment.status: "completed",
 | |
|                 DocumentSegment.enabled: True,
 | |
|                 DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | |
|             })
 | |
| 
 | |
|             db.session.commit()
 | |
| 
 | |
|             return tokens
 | |
| 
 | |
|     def _check_document_paused_status(self, document_id: str):
 | |
|         indexing_cache_key = 'document_{}_is_paused'.format(document_id)
 | |
|         result = redis_client.get(indexing_cache_key)
 | |
|         if result:
 | |
|             raise DocumentIsPausedException()
 | |
| 
 | |
|     def _update_document_index_status(self, document_id: str, after_indexing_status: str,
 | |
|                                       extra_update_params: Optional[dict] = None) -> None:
 | |
|         """
 | |
|         Update the document indexing status.
 | |
|         """
 | |
|         count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
 | |
|         if count > 0:
 | |
|             raise DocumentIsPausedException()
 | |
|         document = DatasetDocument.query.filter_by(id=document_id).first()
 | |
|         if not document:
 | |
|             raise DocumentIsDeletedPausedException()
 | |
| 
 | |
|         update_params = {
 | |
|             DatasetDocument.indexing_status: after_indexing_status
 | |
|         }
 | |
| 
 | |
|         if extra_update_params:
 | |
|             update_params.update(extra_update_params)
 | |
| 
 | |
|         DatasetDocument.query.filter_by(id=document_id).update(update_params)
 | |
|         db.session.commit()
 | |
| 
 | |
|     def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
 | |
|         """
 | |
|         Update the document segment by document id.
 | |
|         """
 | |
|         DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
 | |
|         db.session.commit()
 | |
| 
 | |
|     def batch_add_segments(self, segments: list[DocumentSegment], dataset: Dataset):
 | |
|         """
 | |
|         Batch add segments index processing
 | |
|         """
 | |
|         documents = []
 | |
|         for segment in segments:
 | |
|             document = Document(
 | |
|                 page_content=segment.content,
 | |
|                 metadata={
 | |
|                     "doc_id": segment.index_node_id,
 | |
|                     "doc_hash": segment.index_node_hash,
 | |
|                     "document_id": segment.document_id,
 | |
|                     "dataset_id": segment.dataset_id,
 | |
|                 }
 | |
|             )
 | |
|             documents.append(document)
 | |
|         # save vector index
 | |
|         index_type = dataset.doc_form
 | |
|         index_processor = IndexProcessorFactory(index_type).init_index_processor()
 | |
|         index_processor.load(dataset, documents)
 | |
| 
 | |
|     def _transform(self, index_processor: BaseIndexProcessor, dataset: Dataset,
 | |
|                    text_docs: list[Document], doc_language: str, process_rule: dict) -> list[Document]:
 | |
|         # get embedding model instance
 | |
|         embedding_model_instance = None
 | |
|         if dataset.indexing_technique == 'high_quality':
 | |
|             if dataset.embedding_model_provider:
 | |
|                 embedding_model_instance = self.model_manager.get_model_instance(
 | |
|                     tenant_id=dataset.tenant_id,
 | |
|                     provider=dataset.embedding_model_provider,
 | |
|                     model_type=ModelType.TEXT_EMBEDDING,
 | |
|                     model=dataset.embedding_model
 | |
|                 )
 | |
|             else:
 | |
|                 embedding_model_instance = self.model_manager.get_default_model_instance(
 | |
|                     tenant_id=dataset.tenant_id,
 | |
|                     model_type=ModelType.TEXT_EMBEDDING,
 | |
|                 )
 | |
| 
 | |
|         documents = index_processor.transform(text_docs, embedding_model_instance=embedding_model_instance,
 | |
|                                               process_rule=process_rule, tenant_id=dataset.tenant_id,
 | |
|                                               doc_language=doc_language)
 | |
| 
 | |
|         return documents
 | |
| 
 | |
|     def _load_segments(self, dataset, dataset_document, documents):
 | |
|         # save node to document segment
 | |
|         doc_store = DatasetDocumentStore(
 | |
|             dataset=dataset,
 | |
|             user_id=dataset_document.created_by,
 | |
|             document_id=dataset_document.id
 | |
|         )
 | |
| 
 | |
|         # add document segments
 | |
|         doc_store.add_documents(documents)
 | |
| 
 | |
|         # update document status to indexing
 | |
|         cur_time = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | |
|         self._update_document_index_status(
 | |
|             document_id=dataset_document.id,
 | |
|             after_indexing_status="indexing",
 | |
|             extra_update_params={
 | |
|                 DatasetDocument.cleaning_completed_at: cur_time,
 | |
|                 DatasetDocument.splitting_completed_at: cur_time,
 | |
|             }
 | |
|         )
 | |
| 
 | |
|         # update segment status to indexing
 | |
|         self._update_segments_by_document(
 | |
|             dataset_document_id=dataset_document.id,
 | |
|             update_params={
 | |
|                 DocumentSegment.status: "indexing",
 | |
|                 DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | |
|             }
 | |
|         )
 | |
|         pass
 | |
| 
 | |
| 
 | |
| class DocumentIsPausedException(Exception):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| class DocumentIsDeletedPausedException(Exception):
 | |
|     pass
 | 
