dify/api/core/rag/splitter/text_splitter.py
yihong d2933c2bfe
fix: drop dead code phase2 unused class (#22042)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-07-17 09:33:07 +08:00

302 lines
11 KiB
Python

from __future__ import annotations
import copy
import logging
import re
from abc import ABC, abstractmethod
from collections.abc import Callable, Collection, Iterable, Sequence, Set
from dataclasses import dataclass
from typing import (
Any,
Literal,
Optional,
TypeVar,
Union,
)
from core.rag.models.document import BaseDocumentTransformer, Document
logger = logging.getLogger(__name__)
TS = TypeVar("TS", bound="TextSplitter")
def _split_text_with_regex(text: str, separator: str, keep_separator: bool) -> list[str]:
# Now that we have the separator, split the text
if separator:
if keep_separator:
# The parentheses in the pattern keep the delimiters in the result.
_splits = re.split(f"({re.escape(separator)})", text)
splits = [_splits[i - 1] + _splits[i] for i in range(1, len(_splits), 2)]
if len(_splits) % 2 != 0:
splits += _splits[-1:]
else:
splits = re.split(separator, text)
else:
splits = list(text)
return [s for s in splits if (s not in {"", "\n"})]
class TextSplitter(BaseDocumentTransformer, ABC):
"""Interface for splitting text into chunks."""
def __init__(
self,
chunk_size: int = 4000,
chunk_overlap: int = 200,
length_function: Callable[[list[str]], list[int]] = lambda x: [len(x) for x in x],
keep_separator: bool = False,
add_start_index: bool = False,
) -> None:
"""Create a new TextSplitter.
Args:
chunk_size: Maximum size of chunks to return
chunk_overlap: Overlap in characters between chunks
length_function: Function that measures the length of given chunks
keep_separator: Whether to keep the separator in the chunks
add_start_index: If `True`, includes chunk's start index in metadata
"""
if chunk_overlap > chunk_size:
raise ValueError(
f"Got a larger chunk overlap ({chunk_overlap}) than chunk size ({chunk_size}), should be smaller."
)
self._chunk_size = chunk_size
self._chunk_overlap = chunk_overlap
self._length_function = length_function
self._keep_separator = keep_separator
self._add_start_index = add_start_index
@abstractmethod
def split_text(self, text: str) -> list[str]:
"""Split text into multiple components."""
def create_documents(self, texts: list[str], metadatas: Optional[list[dict]] = None) -> list[Document]:
"""Create documents from a list of texts."""
_metadatas = metadatas or [{}] * len(texts)
documents = []
for i, text in enumerate(texts):
index = -1
for chunk in self.split_text(text):
metadata = copy.deepcopy(_metadatas[i])
if self._add_start_index:
index = text.find(chunk, index + 1)
metadata["start_index"] = index
new_doc = Document(page_content=chunk, metadata=metadata)
documents.append(new_doc)
return documents
def split_documents(self, documents: Iterable[Document]) -> list[Document]:
"""Split documents."""
texts, metadatas = [], []
for doc in documents:
texts.append(doc.page_content)
metadatas.append(doc.metadata or {})
return self.create_documents(texts, metadatas=metadatas)
def _join_docs(self, docs: list[str], separator: str) -> Optional[str]:
text = separator.join(docs)
text = text.strip()
if text == "":
return None
else:
return text
def _merge_splits(self, splits: Iterable[str], separator: str, lengths: list[int]) -> list[str]:
# We now want to combine these smaller pieces into medium size
# chunks to send to the LLM.
separator_len = self._length_function([separator])[0]
docs = []
current_doc: list[str] = []
total = 0
index = 0
for d in splits:
_len = lengths[index]
if total + _len + (separator_len if len(current_doc) > 0 else 0) > self._chunk_size:
if total > self._chunk_size:
logger.warning(
f"Created a chunk of size {total}, which is longer than the specified {self._chunk_size}"
)
if len(current_doc) > 0:
doc = self._join_docs(current_doc, separator)
if doc is not None:
docs.append(doc)
# Keep on popping if:
# - we have a larger chunk than in the chunk overlap
# - or if we still have any chunks and the length is long
while total > self._chunk_overlap or (
total + _len + (separator_len if len(current_doc) > 0 else 0) > self._chunk_size and total > 0
):
total -= self._length_function([current_doc[0]])[0] + (
separator_len if len(current_doc) > 1 else 0
)
current_doc = current_doc[1:]
current_doc.append(d)
total += _len + (separator_len if len(current_doc) > 1 else 0)
index += 1
doc = self._join_docs(current_doc, separator)
if doc is not None:
docs.append(doc)
return docs
@classmethod
def from_huggingface_tokenizer(cls, tokenizer: Any, **kwargs: Any) -> TextSplitter:
"""Text splitter that uses HuggingFace tokenizer to count length."""
try:
from transformers import PreTrainedTokenizerBase # type: ignore
if not isinstance(tokenizer, PreTrainedTokenizerBase):
raise ValueError("Tokenizer received was not an instance of PreTrainedTokenizerBase")
def _huggingface_tokenizer_length(text: str) -> int:
return len(tokenizer.encode(text))
except ImportError:
raise ValueError(
"Could not import transformers python package. Please install it with `pip install transformers`."
)
return cls(length_function=lambda x: [_huggingface_tokenizer_length(text) for text in x], **kwargs)
def transform_documents(self, documents: Sequence[Document], **kwargs: Any) -> Sequence[Document]:
"""Transform sequence of documents by splitting them."""
return self.split_documents(list(documents))
async def atransform_documents(self, documents: Sequence[Document], **kwargs: Any) -> Sequence[Document]:
"""Asynchronously transform a sequence of documents by splitting them."""
raise NotImplementedError
# @dataclass(frozen=True, kw_only=True, slots=True)
@dataclass(frozen=True)
class Tokenizer:
chunk_overlap: int
tokens_per_chunk: int
decode: Callable[[list[int]], str]
encode: Callable[[str], list[int]]
def split_text_on_tokens(*, text: str, tokenizer: Tokenizer) -> list[str]:
"""Split incoming text and return chunks using tokenizer."""
splits: list[str] = []
input_ids = tokenizer.encode(text)
start_idx = 0
cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids))
chunk_ids = input_ids[start_idx:cur_idx]
while start_idx < len(input_ids):
splits.append(tokenizer.decode(chunk_ids))
start_idx += tokenizer.tokens_per_chunk - tokenizer.chunk_overlap
cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids))
chunk_ids = input_ids[start_idx:cur_idx]
return splits
class TokenTextSplitter(TextSplitter):
"""Splitting text to tokens using model tokenizer."""
def __init__(
self,
encoding_name: str = "gpt2",
model_name: Optional[str] = None,
allowed_special: Union[Literal["all"], Set[str]] = set(),
disallowed_special: Union[Literal["all"], Collection[str]] = "all",
**kwargs: Any,
) -> None:
"""Create a new TextSplitter."""
super().__init__(**kwargs)
try:
import tiktoken
except ImportError:
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to for TokenTextSplitter. "
"Please install it with `pip install tiktoken`."
)
if model_name is not None:
enc = tiktoken.encoding_for_model(model_name)
else:
enc = tiktoken.get_encoding(encoding_name)
self._tokenizer = enc
self._allowed_special = allowed_special
self._disallowed_special = disallowed_special
def split_text(self, text: str) -> list[str]:
def _encode(_text: str) -> list[int]:
return self._tokenizer.encode(
_text,
allowed_special=self._allowed_special,
disallowed_special=self._disallowed_special,
)
tokenizer = Tokenizer(
chunk_overlap=self._chunk_overlap,
tokens_per_chunk=self._chunk_size,
decode=self._tokenizer.decode,
encode=_encode,
)
return split_text_on_tokens(text=text, tokenizer=tokenizer)
class RecursiveCharacterTextSplitter(TextSplitter):
"""Splitting text by recursively look at characters.
Recursively tries to split by different characters to find one
that works.
"""
def __init__(
self,
separators: Optional[list[str]] = None,
keep_separator: bool = True,
**kwargs: Any,
) -> None:
"""Create a new TextSplitter."""
super().__init__(keep_separator=keep_separator, **kwargs)
self._separators = separators or ["\n\n", "\n", " ", ""]
def _split_text(self, text: str, separators: list[str]) -> list[str]:
final_chunks = []
separator = separators[-1]
new_separators = []
for i, _s in enumerate(separators):
if _s == "":
separator = _s
break
if re.search(_s, text):
separator = _s
new_separators = separators[i + 1 :]
break
splits = _split_text_with_regex(text, separator, self._keep_separator)
_good_splits = []
_good_splits_lengths = [] # cache the lengths of the splits
_separator = "" if self._keep_separator else separator
s_lens = self._length_function(splits)
for s, s_len in zip(splits, s_lens):
if s_len < self._chunk_size:
_good_splits.append(s)
_good_splits_lengths.append(s_len)
else:
if _good_splits:
merged_text = self._merge_splits(_good_splits, _separator, _good_splits_lengths)
final_chunks.extend(merged_text)
_good_splits = []
_good_splits_lengths = []
if not new_separators:
final_chunks.append(s)
else:
other_info = self._split_text(s, new_separators)
final_chunks.extend(other_info)
if _good_splits:
merged_text = self._merge_splits(_good_splits, _separator, _good_splits_lengths)
final_chunks.extend(merged_text)
return final_chunks
def split_text(self, text: str) -> list[str]:
return self._split_text(text, self._separators)