mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-31 02:42:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			149 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			149 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import io
 | |
| import logging
 | |
| from typing import Optional
 | |
| 
 | |
| from werkzeug.datastructures import FileStorage
 | |
| 
 | |
| from core.model_manager import ModelManager
 | |
| from core.model_runtime.entities.model_entities import ModelType
 | |
| from models.model import App, AppMode, AppModelConfig, Message
 | |
| from services.errors.audio import (
 | |
|     AudioTooLargeServiceError,
 | |
|     NoAudioUploadedServiceError,
 | |
|     ProviderNotSupportSpeechToTextServiceError,
 | |
|     ProviderNotSupportTextToSpeechServiceError,
 | |
|     UnsupportedAudioTypeServiceError,
 | |
| )
 | |
| 
 | |
| FILE_SIZE = 30
 | |
| FILE_SIZE_LIMIT = FILE_SIZE * 1024 * 1024
 | |
| ALLOWED_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm", "amr"]
 | |
| 
 | |
| logger = logging.getLogger(__name__)
 | |
| 
 | |
| 
 | |
| class AudioService:
 | |
|     @classmethod
 | |
|     def transcript_asr(cls, app_model: App, file: FileStorage, end_user: Optional[str] = None):
 | |
|         if app_model.mode in {AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value}:
 | |
|             workflow = app_model.workflow
 | |
|             if workflow is None:
 | |
|                 raise ValueError("Speech to text is not enabled")
 | |
| 
 | |
|             features_dict = workflow.features_dict
 | |
|             if "speech_to_text" not in features_dict or not features_dict["speech_to_text"].get("enabled"):
 | |
|                 raise ValueError("Speech to text is not enabled")
 | |
|         else:
 | |
|             app_model_config: AppModelConfig = app_model.app_model_config
 | |
| 
 | |
|             if not app_model_config.speech_to_text_dict["enabled"]:
 | |
|                 raise ValueError("Speech to text is not enabled")
 | |
| 
 | |
|         if file is None:
 | |
|             raise NoAudioUploadedServiceError()
 | |
| 
 | |
|         extension = file.mimetype
 | |
|         if extension not in [f"audio/{ext}" for ext in ALLOWED_EXTENSIONS]:
 | |
|             raise UnsupportedAudioTypeServiceError()
 | |
| 
 | |
|         file_content = file.read()
 | |
|         file_size = len(file_content)
 | |
| 
 | |
|         if file_size > FILE_SIZE_LIMIT:
 | |
|             message = f"Audio size larger than {FILE_SIZE} mb"
 | |
|             raise AudioTooLargeServiceError(message)
 | |
| 
 | |
|         model_manager = ModelManager()
 | |
|         model_instance = model_manager.get_default_model_instance(
 | |
|             tenant_id=app_model.tenant_id, model_type=ModelType.SPEECH2TEXT
 | |
|         )
 | |
|         if model_instance is None:
 | |
|             raise ProviderNotSupportSpeechToTextServiceError()
 | |
| 
 | |
|         buffer = io.BytesIO(file_content)
 | |
|         buffer.name = "temp.mp3"
 | |
| 
 | |
|         return {"text": model_instance.invoke_speech2text(file=buffer, user=end_user)}
 | |
| 
 | |
|     @classmethod
 | |
|     def transcript_tts(
 | |
|         cls,
 | |
|         app_model: App,
 | |
|         text: Optional[str] = None,
 | |
|         voice: Optional[str] = None,
 | |
|         end_user: Optional[str] = None,
 | |
|         message_id: Optional[str] = None,
 | |
|     ):
 | |
|         from collections.abc import Generator
 | |
| 
 | |
|         from flask import Response, stream_with_context
 | |
| 
 | |
|         from app import app
 | |
|         from extensions.ext_database import db
 | |
| 
 | |
|         def invoke_tts(text_content: str, app_model, voice: Optional[str] = None):
 | |
|             with app.app_context():
 | |
|                 if app_model.mode in {AppMode.ADVANCED_CHAT.value, AppMode.WORKFLOW.value}:
 | |
|                     workflow = app_model.workflow
 | |
|                     if workflow is None:
 | |
|                         raise ValueError("TTS is not enabled")
 | |
| 
 | |
|                     features_dict = workflow.features_dict
 | |
|                     if "text_to_speech" not in features_dict or not features_dict["text_to_speech"].get("enabled"):
 | |
|                         raise ValueError("TTS is not enabled")
 | |
| 
 | |
|                     voice = features_dict["text_to_speech"].get("voice") if voice is None else voice
 | |
|                 else:
 | |
|                     text_to_speech_dict = app_model.app_model_config.text_to_speech_dict
 | |
| 
 | |
|                     if not text_to_speech_dict.get("enabled"):
 | |
|                         raise ValueError("TTS is not enabled")
 | |
| 
 | |
|                     voice = text_to_speech_dict.get("voice") if voice is None else voice
 | |
| 
 | |
|                 model_manager = ModelManager()
 | |
|                 model_instance = model_manager.get_default_model_instance(
 | |
|                     tenant_id=app_model.tenant_id, model_type=ModelType.TTS
 | |
|                 )
 | |
|                 try:
 | |
|                     if not voice:
 | |
|                         voices = model_instance.get_tts_voices()
 | |
|                         if voices:
 | |
|                             voice = voices[0].get("value")
 | |
|                         else:
 | |
|                             raise ValueError("Sorry, no voice available.")
 | |
| 
 | |
|                     return model_instance.invoke_tts(
 | |
|                         content_text=text_content.strip(), user=end_user, tenant_id=app_model.tenant_id, voice=voice
 | |
|                     )
 | |
|                 except Exception as e:
 | |
|                     raise e
 | |
| 
 | |
|         if message_id:
 | |
|             message = db.session.query(Message).filter(Message.id == message_id).first()
 | |
|             if message.answer == "" and message.status == "normal":
 | |
|                 return None
 | |
| 
 | |
|             else:
 | |
|                 response = invoke_tts(message.answer, app_model=app_model, voice=voice)
 | |
|                 if isinstance(response, Generator):
 | |
|                     return Response(stream_with_context(response), content_type="audio/mpeg")
 | |
|                 return response
 | |
|         else:
 | |
|             response = invoke_tts(text, app_model, voice)
 | |
|             if isinstance(response, Generator):
 | |
|                 return Response(stream_with_context(response), content_type="audio/mpeg")
 | |
|             return response
 | |
| 
 | |
|     @classmethod
 | |
|     def transcript_tts_voices(cls, tenant_id: str, language: str):
 | |
|         model_manager = ModelManager()
 | |
|         model_instance = model_manager.get_default_model_instance(tenant_id=tenant_id, model_type=ModelType.TTS)
 | |
|         if model_instance is None:
 | |
|             raise ProviderNotSupportTextToSpeechServiceError()
 | |
| 
 | |
|         try:
 | |
|             return model_instance.get_tts_voices(language)
 | |
|         except Exception as e:
 | |
|             raise e
 | 
