mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-31 02:42:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			120 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			120 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Optional
 | |
| 
 | |
| from flask import Flask, current_app
 | |
| from langchain.embeddings.base import Embeddings
 | |
| 
 | |
| from core.index.vector_index.vector_index import VectorIndex
 | |
| from core.model_manager import ModelManager
 | |
| from core.model_runtime.entities.model_entities import ModelType
 | |
| from core.model_runtime.errors.invoke import InvokeAuthorizationError
 | |
| from core.rerank.rerank import RerankRunner
 | |
| from extensions.ext_database import db
 | |
| from models.dataset import Dataset
 | |
| 
 | |
| default_retrieval_model = {
 | |
|     'search_method': 'semantic_search',
 | |
|     'reranking_enable': False,
 | |
|     'reranking_model': {
 | |
|         'reranking_provider_name': '',
 | |
|         'reranking_model_name': ''
 | |
|     },
 | |
|     'top_k': 2,
 | |
|     'score_threshold_enabled': False
 | |
| }
 | |
| 
 | |
| 
 | |
| class RetrievalService:
 | |
| 
 | |
|     @classmethod
 | |
|     def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
 | |
|                          top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
 | |
|                          all_documents: list, search_method: str, embeddings: Embeddings):
 | |
|         with flask_app.app_context():
 | |
|             dataset = db.session.query(Dataset).filter(
 | |
|                 Dataset.id == dataset_id
 | |
|             ).first()
 | |
| 
 | |
|             vector_index = VectorIndex(
 | |
|                 dataset=dataset,
 | |
|                 config=current_app.config,
 | |
|                 embeddings=embeddings
 | |
|             )
 | |
| 
 | |
|             documents = vector_index.search(
 | |
|                 query,
 | |
|                 search_type='similarity_score_threshold',
 | |
|                 search_kwargs={
 | |
|                     'k': top_k,
 | |
|                     'score_threshold': score_threshold,
 | |
|                     'filter': {
 | |
|                         'group_id': [dataset.id]
 | |
|                     }
 | |
|                 }
 | |
|             )
 | |
| 
 | |
|             if documents:
 | |
|                 if reranking_model and search_method == 'semantic_search':
 | |
|                     try:
 | |
|                         model_manager = ModelManager()
 | |
|                         rerank_model_instance = model_manager.get_model_instance(
 | |
|                             tenant_id=dataset.tenant_id,
 | |
|                             provider=reranking_model['reranking_provider_name'],
 | |
|                             model_type=ModelType.RERANK,
 | |
|                             model=reranking_model['reranking_model_name']
 | |
|                         )
 | |
|                     except InvokeAuthorizationError:
 | |
|                         return
 | |
| 
 | |
|                     rerank_runner = RerankRunner(rerank_model_instance)
 | |
|                     all_documents.extend(rerank_runner.run(
 | |
|                         query=query,
 | |
|                         documents=documents,
 | |
|                         score_threshold=score_threshold,
 | |
|                         top_n=len(documents)
 | |
|                     ))
 | |
|                 else:
 | |
|                     all_documents.extend(documents)
 | |
| 
 | |
|     @classmethod
 | |
|     def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
 | |
|                                top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
 | |
|                                all_documents: list, search_method: str, embeddings: Embeddings):
 | |
|         with flask_app.app_context():
 | |
|             dataset = db.session.query(Dataset).filter(
 | |
|                 Dataset.id == dataset_id
 | |
|             ).first()
 | |
| 
 | |
|             vector_index = VectorIndex(
 | |
|                 dataset=dataset,
 | |
|                 config=current_app.config,
 | |
|                 embeddings=embeddings
 | |
|             )
 | |
| 
 | |
|             documents = vector_index.search_by_full_text_index(
 | |
|                 query,
 | |
|                 search_type='similarity_score_threshold',
 | |
|                 top_k=top_k
 | |
|             )
 | |
|             if documents:
 | |
|                 if reranking_model and search_method == 'full_text_search':
 | |
|                     try:
 | |
|                         model_manager = ModelManager()
 | |
|                         rerank_model_instance = model_manager.get_model_instance(
 | |
|                             tenant_id=dataset.tenant_id,
 | |
|                             provider=reranking_model['reranking_provider_name'],
 | |
|                             model_type=ModelType.RERANK,
 | |
|                             model=reranking_model['reranking_model_name']
 | |
|                         )
 | |
|                     except InvokeAuthorizationError:
 | |
|                         return
 | |
| 
 | |
|                     rerank_runner = RerankRunner(rerank_model_instance)
 | |
|                     all_documents.extend(rerank_runner.run(
 | |
|                         query=query,
 | |
|                         documents=documents,
 | |
|                         score_threshold=score_threshold,
 | |
|                         top_n=len(documents)
 | |
|                     ))
 | |
|                 else:
 | |
|                     all_documents.extend(documents)
 | 
