dify/api/controllers/console/app/generator.py
Asuka Minato 247069c7e9
refactor: port reqparse to Pydantic model (#28913)
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-11-30 16:09:42 +09:00

281 lines
12 KiB
Python

from collections.abc import Sequence
from typing import Any
from flask_restx import Resource
from pydantic import BaseModel, Field
from controllers.console import console_ns
from controllers.console.app.error import (
CompletionRequestError,
ProviderModelCurrentlyNotSupportError,
ProviderNotInitializeError,
ProviderQuotaExceededError,
)
from controllers.console.wraps import account_initialization_required, setup_required
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.helper.code_executor.code_node_provider import CodeNodeProvider
from core.helper.code_executor.javascript.javascript_code_provider import JavascriptCodeProvider
from core.helper.code_executor.python3.python3_code_provider import Python3CodeProvider
from core.llm_generator.llm_generator import LLMGenerator
from core.model_runtime.errors.invoke import InvokeError
from extensions.ext_database import db
from libs.login import current_account_with_tenant, login_required
from models import App
from services.workflow_service import WorkflowService
DEFAULT_REF_TEMPLATE_SWAGGER_2_0 = "#/definitions/{model}"
class RuleGeneratePayload(BaseModel):
instruction: str = Field(..., description="Rule generation instruction")
model_config_data: dict[str, Any] = Field(..., alias="model_config", description="Model configuration")
no_variable: bool = Field(default=False, description="Whether to exclude variables")
class RuleCodeGeneratePayload(RuleGeneratePayload):
code_language: str = Field(default="javascript", description="Programming language for code generation")
class RuleStructuredOutputPayload(BaseModel):
instruction: str = Field(..., description="Structured output generation instruction")
model_config_data: dict[str, Any] = Field(..., alias="model_config", description="Model configuration")
class InstructionGeneratePayload(BaseModel):
flow_id: str = Field(..., description="Workflow/Flow ID")
node_id: str = Field(default="", description="Node ID for workflow context")
current: str = Field(default="", description="Current instruction text")
language: str = Field(default="javascript", description="Programming language (javascript/python)")
instruction: str = Field(..., description="Instruction for generation")
model_config_data: dict[str, Any] = Field(..., alias="model_config", description="Model configuration")
ideal_output: str = Field(default="", description="Expected ideal output")
class InstructionTemplatePayload(BaseModel):
type: str = Field(..., description="Instruction template type")
def reg(cls: type[BaseModel]):
console_ns.schema_model(cls.__name__, cls.model_json_schema(ref_template=DEFAULT_REF_TEMPLATE_SWAGGER_2_0))
reg(RuleGeneratePayload)
reg(RuleCodeGeneratePayload)
reg(RuleStructuredOutputPayload)
reg(InstructionGeneratePayload)
reg(InstructionTemplatePayload)
@console_ns.route("/rule-generate")
class RuleGenerateApi(Resource):
@console_ns.doc("generate_rule_config")
@console_ns.doc(description="Generate rule configuration using LLM")
@console_ns.expect(console_ns.models[RuleGeneratePayload.__name__])
@console_ns.response(200, "Rule configuration generated successfully")
@console_ns.response(400, "Invalid request parameters")
@console_ns.response(402, "Provider quota exceeded")
@setup_required
@login_required
@account_initialization_required
def post(self):
args = RuleGeneratePayload.model_validate(console_ns.payload)
_, current_tenant_id = current_account_with_tenant()
try:
rules = LLMGenerator.generate_rule_config(
tenant_id=current_tenant_id,
instruction=args.instruction,
model_config=args.model_config_data,
no_variable=args.no_variable,
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
return rules
@console_ns.route("/rule-code-generate")
class RuleCodeGenerateApi(Resource):
@console_ns.doc("generate_rule_code")
@console_ns.doc(description="Generate code rules using LLM")
@console_ns.expect(console_ns.models[RuleCodeGeneratePayload.__name__])
@console_ns.response(200, "Code rules generated successfully")
@console_ns.response(400, "Invalid request parameters")
@console_ns.response(402, "Provider quota exceeded")
@setup_required
@login_required
@account_initialization_required
def post(self):
args = RuleCodeGeneratePayload.model_validate(console_ns.payload)
_, current_tenant_id = current_account_with_tenant()
try:
code_result = LLMGenerator.generate_code(
tenant_id=current_tenant_id,
instruction=args.instruction,
model_config=args.model_config_data,
code_language=args.code_language,
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
return code_result
@console_ns.route("/rule-structured-output-generate")
class RuleStructuredOutputGenerateApi(Resource):
@console_ns.doc("generate_structured_output")
@console_ns.doc(description="Generate structured output rules using LLM")
@console_ns.expect(console_ns.models[RuleStructuredOutputPayload.__name__])
@console_ns.response(200, "Structured output generated successfully")
@console_ns.response(400, "Invalid request parameters")
@console_ns.response(402, "Provider quota exceeded")
@setup_required
@login_required
@account_initialization_required
def post(self):
args = RuleStructuredOutputPayload.model_validate(console_ns.payload)
_, current_tenant_id = current_account_with_tenant()
try:
structured_output = LLMGenerator.generate_structured_output(
tenant_id=current_tenant_id,
instruction=args.instruction,
model_config=args.model_config_data,
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
return structured_output
@console_ns.route("/instruction-generate")
class InstructionGenerateApi(Resource):
@console_ns.doc("generate_instruction")
@console_ns.doc(description="Generate instruction for workflow nodes or general use")
@console_ns.expect(console_ns.models[InstructionGeneratePayload.__name__])
@console_ns.response(200, "Instruction generated successfully")
@console_ns.response(400, "Invalid request parameters or flow/workflow not found")
@console_ns.response(402, "Provider quota exceeded")
@setup_required
@login_required
@account_initialization_required
def post(self):
args = InstructionGeneratePayload.model_validate(console_ns.payload)
_, current_tenant_id = current_account_with_tenant()
providers: list[type[CodeNodeProvider]] = [Python3CodeProvider, JavascriptCodeProvider]
code_provider: type[CodeNodeProvider] | None = next(
(p for p in providers if p.is_accept_language(args.language)), None
)
code_template = code_provider.get_default_code() if code_provider else ""
try:
# Generate from nothing for a workflow node
if (args.current in (code_template, "")) and args.node_id != "":
app = db.session.query(App).where(App.id == args.flow_id).first()
if not app:
return {"error": f"app {args.flow_id} not found"}, 400
workflow = WorkflowService().get_draft_workflow(app_model=app)
if not workflow:
return {"error": f"workflow {args.flow_id} not found"}, 400
nodes: Sequence = workflow.graph_dict["nodes"]
node = [node for node in nodes if node["id"] == args.node_id]
if len(node) == 0:
return {"error": f"node {args.node_id} not found"}, 400
node_type = node[0]["data"]["type"]
match node_type:
case "llm":
return LLMGenerator.generate_rule_config(
current_tenant_id,
instruction=args.instruction,
model_config=args.model_config_data,
no_variable=True,
)
case "agent":
return LLMGenerator.generate_rule_config(
current_tenant_id,
instruction=args.instruction,
model_config=args.model_config_data,
no_variable=True,
)
case "code":
return LLMGenerator.generate_code(
tenant_id=current_tenant_id,
instruction=args.instruction,
model_config=args.model_config_data,
code_language=args.language,
)
case _:
return {"error": f"invalid node type: {node_type}"}
if args.node_id == "" and args.current != "": # For legacy app without a workflow
return LLMGenerator.instruction_modify_legacy(
tenant_id=current_tenant_id,
flow_id=args.flow_id,
current=args.current,
instruction=args.instruction,
model_config=args.model_config_data,
ideal_output=args.ideal_output,
)
if args.node_id != "" and args.current != "": # For workflow node
return LLMGenerator.instruction_modify_workflow(
tenant_id=current_tenant_id,
flow_id=args.flow_id,
node_id=args.node_id,
current=args.current,
instruction=args.instruction,
model_config=args.model_config_data,
ideal_output=args.ideal_output,
workflow_service=WorkflowService(),
)
return {"error": "incompatible parameters"}, 400
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
@console_ns.route("/instruction-generate/template")
class InstructionGenerationTemplateApi(Resource):
@console_ns.doc("get_instruction_template")
@console_ns.doc(description="Get instruction generation template")
@console_ns.expect(console_ns.models[InstructionTemplatePayload.__name__])
@console_ns.response(200, "Template retrieved successfully")
@console_ns.response(400, "Invalid request parameters")
@setup_required
@login_required
@account_initialization_required
def post(self):
args = InstructionTemplatePayload.model_validate(console_ns.payload)
match args.type:
case "prompt":
from core.llm_generator.prompts import INSTRUCTION_GENERATE_TEMPLATE_PROMPT
return {"data": INSTRUCTION_GENERATE_TEMPLATE_PROMPT}
case "code":
from core.llm_generator.prompts import INSTRUCTION_GENERATE_TEMPLATE_CODE
return {"data": INSTRUCTION_GENERATE_TEMPLATE_CODE}
case _:
raise ValueError(f"Invalid type: {args.type}")