mirror of
				https://github.com/langgenius/dify.git
				synced 2025-11-04 12:53:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			87 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			87 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import logging
 | 
						|
from typing import List
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from langchain.embeddings.base import Embeddings
 | 
						|
from sqlalchemy.exc import IntegrityError
 | 
						|
 | 
						|
from core.model_providers.models.embedding.base import BaseEmbedding
 | 
						|
from extensions.ext_database import db
 | 
						|
from libs import helper
 | 
						|
from models.dataset import Embedding
 | 
						|
 | 
						|
 | 
						|
class CacheEmbedding(Embeddings):
 | 
						|
    def __init__(self, embeddings: BaseEmbedding):
 | 
						|
        self._embeddings = embeddings
 | 
						|
 | 
						|
    def embed_documents(self, texts: List[str]) -> List[List[float]]:
 | 
						|
        """Embed search docs."""
 | 
						|
        # use doc embedding cache or store if not exists
 | 
						|
        text_embeddings = []
 | 
						|
        embedding_queue_texts = []
 | 
						|
        for text in texts:
 | 
						|
            hash = helper.generate_text_hash(text)
 | 
						|
            embedding = db.session.query(Embedding).filter_by(model_name=self._embeddings.name, hash=hash).first()
 | 
						|
            if embedding:
 | 
						|
                text_embeddings.append(embedding.get_embedding())
 | 
						|
            else:
 | 
						|
                embedding_queue_texts.append(text)
 | 
						|
 | 
						|
        if embedding_queue_texts:
 | 
						|
            try:
 | 
						|
                embedding_results = self._embeddings.client.embed_documents(embedding_queue_texts)
 | 
						|
            except Exception as ex:
 | 
						|
                raise self._embeddings.handle_exceptions(ex)
 | 
						|
            i = 0
 | 
						|
            normalized_embedding_results = []
 | 
						|
            for text in embedding_queue_texts:
 | 
						|
                hash = helper.generate_text_hash(text)
 | 
						|
 | 
						|
                try:
 | 
						|
                    embedding = Embedding(model_name=self._embeddings.name, hash=hash)
 | 
						|
                    vector = embedding_results[i]
 | 
						|
                    normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
 | 
						|
                    normalized_embedding_results.append(normalized_embedding)
 | 
						|
                    embedding.set_embedding(normalized_embedding)
 | 
						|
                    db.session.add(embedding)
 | 
						|
                    db.session.commit()
 | 
						|
                except IntegrityError:
 | 
						|
                    db.session.rollback()
 | 
						|
                    continue
 | 
						|
                except:
 | 
						|
                    logging.exception('Failed to add embedding to db')
 | 
						|
                    continue
 | 
						|
                finally:
 | 
						|
                    i += 1
 | 
						|
 | 
						|
            text_embeddings.extend(normalized_embedding_results)
 | 
						|
        return text_embeddings
 | 
						|
 | 
						|
    def embed_query(self, text: str) -> List[float]:
 | 
						|
        """Embed query text."""
 | 
						|
        # use doc embedding cache or store if not exists
 | 
						|
        hash = helper.generate_text_hash(text)
 | 
						|
        embedding = db.session.query(Embedding).filter_by(model_name=self._embeddings.name, hash=hash).first()
 | 
						|
        if embedding:
 | 
						|
            return embedding.get_embedding()
 | 
						|
 | 
						|
        try:
 | 
						|
            embedding_results = self._embeddings.client.embed_query(text)
 | 
						|
            embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist()
 | 
						|
        except Exception as ex:
 | 
						|
            raise self._embeddings.handle_exceptions(ex)
 | 
						|
 | 
						|
        try:
 | 
						|
            embedding = Embedding(model_name=self._embeddings.name, hash=hash)
 | 
						|
            embedding.set_embedding(embedding_results)
 | 
						|
            db.session.add(embedding)
 | 
						|
            db.session.commit()
 | 
						|
        except IntegrityError:
 | 
						|
            db.session.rollback()
 | 
						|
        except:
 | 
						|
            logging.exception('Failed to add embedding to db')
 | 
						|
 | 
						|
        return embedding_results
 | 
						|
 |