mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-31 02:42:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			151 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			151 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import logging
 | |
| import time
 | |
| 
 | |
| import click
 | |
| from celery import shared_task
 | |
| 
 | |
| from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
 | |
| from core.rag.models.document import Document
 | |
| from extensions.ext_database import db
 | |
| from models.dataset import Dataset, DocumentSegment
 | |
| from models.dataset import Document as DatasetDocument
 | |
| 
 | |
| 
 | |
| @shared_task(queue="dataset")
 | |
| def deal_dataset_vector_index_task(dataset_id: str, action: str):
 | |
|     """
 | |
|     Async deal dataset from index
 | |
|     :param dataset_id: dataset_id
 | |
|     :param action: action
 | |
|     Usage: deal_dataset_vector_index_task.delay(dataset_id, action)
 | |
|     """
 | |
|     logging.info(click.style("Start deal dataset vector index: {}".format(dataset_id), fg="green"))
 | |
|     start_at = time.perf_counter()
 | |
| 
 | |
|     try:
 | |
|         dataset = Dataset.query.filter_by(id=dataset_id).first()
 | |
| 
 | |
|         if not dataset:
 | |
|             raise Exception("Dataset not found")
 | |
|         index_type = dataset.doc_form
 | |
|         index_processor = IndexProcessorFactory(index_type).init_index_processor()
 | |
|         if action == "remove":
 | |
|             index_processor.clean(dataset, None, with_keywords=False)
 | |
|         elif action == "add":
 | |
|             dataset_documents = (
 | |
|                 db.session.query(DatasetDocument)
 | |
|                 .filter(
 | |
|                     DatasetDocument.dataset_id == dataset_id,
 | |
|                     DatasetDocument.indexing_status == "completed",
 | |
|                     DatasetDocument.enabled == True,
 | |
|                     DatasetDocument.archived == False,
 | |
|                 )
 | |
|                 .all()
 | |
|             )
 | |
| 
 | |
|             if dataset_documents:
 | |
|                 dataset_documents_ids = [doc.id for doc in dataset_documents]
 | |
|                 db.session.query(DatasetDocument).filter(DatasetDocument.id.in_(dataset_documents_ids)).update(
 | |
|                     {"indexing_status": "indexing"}, synchronize_session=False
 | |
|                 )
 | |
|                 db.session.commit()
 | |
| 
 | |
|                 for dataset_document in dataset_documents:
 | |
|                     try:
 | |
|                         # add from vector index
 | |
|                         segments = (
 | |
|                             db.session.query(DocumentSegment)
 | |
|                             .filter(DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True)
 | |
|                             .order_by(DocumentSegment.position.asc())
 | |
|                             .all()
 | |
|                         )
 | |
|                         if segments:
 | |
|                             documents = []
 | |
|                             for segment in segments:
 | |
|                                 document = Document(
 | |
|                                     page_content=segment.content,
 | |
|                                     metadata={
 | |
|                                         "doc_id": segment.index_node_id,
 | |
|                                         "doc_hash": segment.index_node_hash,
 | |
|                                         "document_id": segment.document_id,
 | |
|                                         "dataset_id": segment.dataset_id,
 | |
|                                     },
 | |
|                                 )
 | |
| 
 | |
|                                 documents.append(document)
 | |
|                             # save vector index
 | |
|                             index_processor.load(dataset, documents, with_keywords=False)
 | |
|                         db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
 | |
|                             {"indexing_status": "completed"}, synchronize_session=False
 | |
|                         )
 | |
|                         db.session.commit()
 | |
|                     except Exception as e:
 | |
|                         db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
 | |
|                             {"indexing_status": "error", "error": str(e)}, synchronize_session=False
 | |
|                         )
 | |
|                         db.session.commit()
 | |
|         elif action == "update":
 | |
|             dataset_documents = (
 | |
|                 db.session.query(DatasetDocument)
 | |
|                 .filter(
 | |
|                     DatasetDocument.dataset_id == dataset_id,
 | |
|                     DatasetDocument.indexing_status == "completed",
 | |
|                     DatasetDocument.enabled == True,
 | |
|                     DatasetDocument.archived == False,
 | |
|                 )
 | |
|                 .all()
 | |
|             )
 | |
|             # add new index
 | |
|             if dataset_documents:
 | |
|                 # update document status
 | |
|                 dataset_documents_ids = [doc.id for doc in dataset_documents]
 | |
|                 db.session.query(DatasetDocument).filter(DatasetDocument.id.in_(dataset_documents_ids)).update(
 | |
|                     {"indexing_status": "indexing"}, synchronize_session=False
 | |
|                 )
 | |
|                 db.session.commit()
 | |
| 
 | |
|                 # clean index
 | |
|                 index_processor.clean(dataset, None, with_keywords=False)
 | |
| 
 | |
|                 for dataset_document in dataset_documents:
 | |
|                     # update from vector index
 | |
|                     try:
 | |
|                         segments = (
 | |
|                             db.session.query(DocumentSegment)
 | |
|                             .filter(DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True)
 | |
|                             .order_by(DocumentSegment.position.asc())
 | |
|                             .all()
 | |
|                         )
 | |
|                         if segments:
 | |
|                             documents = []
 | |
|                             for segment in segments:
 | |
|                                 document = Document(
 | |
|                                     page_content=segment.content,
 | |
|                                     metadata={
 | |
|                                         "doc_id": segment.index_node_id,
 | |
|                                         "doc_hash": segment.index_node_hash,
 | |
|                                         "document_id": segment.document_id,
 | |
|                                         "dataset_id": segment.dataset_id,
 | |
|                                     },
 | |
|                                 )
 | |
| 
 | |
|                                 documents.append(document)
 | |
|                             # save vector index
 | |
|                             index_processor.load(dataset, documents, with_keywords=False)
 | |
|                         db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
 | |
|                             {"indexing_status": "completed"}, synchronize_session=False
 | |
|                         )
 | |
|                         db.session.commit()
 | |
|                     except Exception as e:
 | |
|                         db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
 | |
|                             {"indexing_status": "error", "error": str(e)}, synchronize_session=False
 | |
|                         )
 | |
|                         db.session.commit()
 | |
| 
 | |
|         end_at = time.perf_counter()
 | |
|         logging.info(
 | |
|             click.style("Deal dataset vector index: {} latency: {}".format(dataset_id, end_at - start_at), fg="green")
 | |
|         )
 | |
|     except Exception:
 | |
|         logging.exception("Deal dataset vector index failed")
 | 
