dify/api/core/rag/rerank/rerank_model.py
Jyong 9affc546c6
Feat/support multimodal embedding (#29115)
Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
2025-12-09 14:41:46 +08:00

192 lines
8.0 KiB
Python

import base64
from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.entities.rerank_entities import RerankResult
from core.rag.index_processor.constant.doc_type import DocType
from core.rag.index_processor.constant.query_type import QueryType
from core.rag.models.document import Document
from core.rag.rerank.rerank_base import BaseRerankRunner
from extensions.ext_database import db
from extensions.ext_storage import storage
from models.model import UploadFile
class RerankModelRunner(BaseRerankRunner):
def __init__(self, rerank_model_instance: ModelInstance):
self.rerank_model_instance = rerank_model_instance
def run(
self,
query: str,
documents: list[Document],
score_threshold: float | None = None,
top_n: int | None = None,
user: str | None = None,
query_type: QueryType = QueryType.TEXT_QUERY,
) -> list[Document]:
"""
Run rerank model
:param query: search query
:param documents: documents for reranking
:param score_threshold: score threshold
:param top_n: top n
:param user: unique user id if needed
:return:
"""
model_manager = ModelManager()
is_support_vision = model_manager.check_model_support_vision(
tenant_id=self.rerank_model_instance.provider_model_bundle.configuration.tenant_id,
provider=self.rerank_model_instance.provider,
model=self.rerank_model_instance.model,
model_type=ModelType.RERANK,
)
if not is_support_vision:
if query_type == QueryType.TEXT_QUERY:
rerank_result, unique_documents = self.fetch_text_rerank(query, documents, score_threshold, top_n, user)
else:
return documents
else:
rerank_result, unique_documents = self.fetch_multimodal_rerank(
query, documents, score_threshold, top_n, user, query_type
)
rerank_documents = []
for result in rerank_result.docs:
if score_threshold is None or result.score >= score_threshold:
# format document
rerank_document = Document(
page_content=result.text,
metadata=unique_documents[result.index].metadata,
provider=unique_documents[result.index].provider,
)
if rerank_document.metadata is not None:
rerank_document.metadata["score"] = result.score
rerank_documents.append(rerank_document)
rerank_documents.sort(key=lambda x: x.metadata.get("score", 0.0), reverse=True)
return rerank_documents[:top_n] if top_n else rerank_documents
def fetch_text_rerank(
self,
query: str,
documents: list[Document],
score_threshold: float | None = None,
top_n: int | None = None,
user: str | None = None,
) -> tuple[RerankResult, list[Document]]:
"""
Fetch text rerank
:param query: search query
:param documents: documents for reranking
:param score_threshold: score threshold
:param top_n: top n
:param user: unique user id if needed
:return:
"""
docs = []
doc_ids = set()
unique_documents = []
for document in documents:
if (
document.provider == "dify"
and document.metadata is not None
and document.metadata["doc_id"] not in doc_ids
):
if not document.metadata.get("doc_type") or document.metadata.get("doc_type") == DocType.TEXT:
doc_ids.add(document.metadata["doc_id"])
docs.append(document.page_content)
unique_documents.append(document)
elif document.provider == "external":
if document not in unique_documents:
docs.append(document.page_content)
unique_documents.append(document)
rerank_result = self.rerank_model_instance.invoke_rerank(
query=query, docs=docs, score_threshold=score_threshold, top_n=top_n, user=user
)
return rerank_result, unique_documents
def fetch_multimodal_rerank(
self,
query: str,
documents: list[Document],
score_threshold: float | None = None,
top_n: int | None = None,
user: str | None = None,
query_type: QueryType = QueryType.TEXT_QUERY,
) -> tuple[RerankResult, list[Document]]:
"""
Fetch multimodal rerank
:param query: search query
:param documents: documents for reranking
:param score_threshold: score threshold
:param top_n: top n
:param user: unique user id if needed
:param query_type: query type
:return: rerank result
"""
docs = []
doc_ids = set()
unique_documents = []
for document in documents:
if (
document.provider == "dify"
and document.metadata is not None
and document.metadata["doc_id"] not in doc_ids
):
if document.metadata.get("doc_type") == DocType.IMAGE:
# Query file info within db.session context to ensure thread-safe access
upload_file = (
db.session.query(UploadFile).where(UploadFile.id == document.metadata["doc_id"]).first()
)
if upload_file:
blob = storage.load_once(upload_file.key)
document_file_base64 = base64.b64encode(blob).decode()
document_file_dict = {
"content": document_file_base64,
"content_type": document.metadata["doc_type"],
}
docs.append(document_file_dict)
else:
document_text_dict = {
"content": document.page_content,
"content_type": document.metadata.get("doc_type") or DocType.TEXT,
}
docs.append(document_text_dict)
doc_ids.add(document.metadata["doc_id"])
unique_documents.append(document)
elif document.provider == "external":
if document not in unique_documents:
docs.append(
{
"content": document.page_content,
"content_type": document.metadata.get("doc_type") or DocType.TEXT,
}
)
unique_documents.append(document)
documents = unique_documents
if query_type == QueryType.TEXT_QUERY:
rerank_result, unique_documents = self.fetch_text_rerank(query, documents, score_threshold, top_n, user)
return rerank_result, unique_documents
elif query_type == QueryType.IMAGE_QUERY:
# Query file info within db.session context to ensure thread-safe access
upload_file = db.session.query(UploadFile).where(UploadFile.id == query).first()
if upload_file:
blob = storage.load_once(upload_file.key)
file_query = base64.b64encode(blob).decode()
file_query_dict = {
"content": file_query,
"content_type": DocType.IMAGE,
}
rerank_result = self.rerank_model_instance.invoke_multimodal_rerank(
query=file_query_dict, docs=docs, score_threshold=score_threshold, top_n=top_n, user=user
)
return rerank_result, unique_documents
else:
raise ValueError(f"Upload file not found for query: {query}")
else:
raise ValueError(f"Query type {query_type} is not supported")