mirror of
				https://github.com/langgenius/dify.git
				synced 2025-11-04 04:43:09 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			207 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			207 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import logging
 | 
						|
import threading
 | 
						|
import time
 | 
						|
from typing import List
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from core.embedding.cached_embedding import CacheEmbedding
 | 
						|
from core.model_manager import ModelManager
 | 
						|
from core.model_runtime.entities.model_entities import ModelType
 | 
						|
from core.rerank.rerank import RerankRunner
 | 
						|
from extensions.ext_database import db
 | 
						|
from flask import current_app
 | 
						|
from langchain.embeddings.base import Embeddings
 | 
						|
from langchain.schema import Document
 | 
						|
from models.account import Account
 | 
						|
from models.dataset import Dataset, DatasetQuery, DocumentSegment
 | 
						|
from services.retrieval_service import RetrievalService
 | 
						|
from sklearn.manifold import TSNE
 | 
						|
 | 
						|
default_retrieval_model = {
 | 
						|
    'search_method': 'semantic_search',
 | 
						|
    'reranking_enable': False,
 | 
						|
    'reranking_model': {
 | 
						|
        'reranking_provider_name': '',
 | 
						|
        'reranking_model_name': ''
 | 
						|
    },
 | 
						|
    'top_k': 2,
 | 
						|
    'score_threshold_enabled': False
 | 
						|
}
 | 
						|
 | 
						|
class HitTestingService:
 | 
						|
    @classmethod
 | 
						|
    def retrieve(cls, dataset: Dataset, query: str, account: Account, retrieval_model: dict, limit: int = 10) -> dict:
 | 
						|
        if dataset.available_document_count == 0 or dataset.available_segment_count == 0:
 | 
						|
            return {
 | 
						|
                "query": {
 | 
						|
                    "content": query,
 | 
						|
                    "tsne_position": {'x': 0, 'y': 0},
 | 
						|
                },
 | 
						|
                "records": []
 | 
						|
            }
 | 
						|
 | 
						|
        start = time.perf_counter()
 | 
						|
 | 
						|
        # get retrieval model , if the model is not setting , using default
 | 
						|
        if not retrieval_model:
 | 
						|
            retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
 | 
						|
 | 
						|
        # get embedding model
 | 
						|
        model_manager = ModelManager()
 | 
						|
        embedding_model = model_manager.get_model_instance(
 | 
						|
            tenant_id=dataset.tenant_id,
 | 
						|
            model_type=ModelType.TEXT_EMBEDDING,
 | 
						|
            provider=dataset.embedding_model_provider,
 | 
						|
            model=dataset.embedding_model
 | 
						|
        )
 | 
						|
 | 
						|
        embeddings = CacheEmbedding(embedding_model)
 | 
						|
 | 
						|
        all_documents = []
 | 
						|
        threads = []
 | 
						|
 | 
						|
        # retrieval_model source with semantic
 | 
						|
        if retrieval_model['search_method'] == 'semantic_search' or retrieval_model['search_method'] == 'hybrid_search':
 | 
						|
            embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
 | 
						|
                'flask_app': current_app._get_current_object(),
 | 
						|
                'dataset_id': str(dataset.id),
 | 
						|
                'query': query,
 | 
						|
                'top_k': retrieval_model['top_k'],
 | 
						|
                'score_threshold': retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
 | 
						|
                'reranking_model': retrieval_model['reranking_model'] if retrieval_model['reranking_enable'] else None,
 | 
						|
                'all_documents': all_documents,
 | 
						|
                'search_method': retrieval_model['search_method'],
 | 
						|
                'embeddings': embeddings
 | 
						|
            })
 | 
						|
            threads.append(embedding_thread)
 | 
						|
            embedding_thread.start()
 | 
						|
 | 
						|
        # retrieval source with full text
 | 
						|
        if retrieval_model['search_method'] == 'full_text_search' or retrieval_model['search_method'] == 'hybrid_search':
 | 
						|
            full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
 | 
						|
                'flask_app': current_app._get_current_object(),
 | 
						|
                'dataset_id': str(dataset.id),
 | 
						|
                'query': query,
 | 
						|
                'search_method': retrieval_model['search_method'],
 | 
						|
                'embeddings': embeddings,
 | 
						|
                'score_threshold': retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
 | 
						|
                'top_k': retrieval_model['top_k'],
 | 
						|
                'reranking_model': retrieval_model['reranking_model'] if retrieval_model['reranking_enable'] else None,
 | 
						|
                'all_documents': all_documents
 | 
						|
            })
 | 
						|
            threads.append(full_text_index_thread)
 | 
						|
            full_text_index_thread.start()
 | 
						|
 | 
						|
        for thread in threads:
 | 
						|
            thread.join()
 | 
						|
 | 
						|
        if retrieval_model['search_method'] == 'hybrid_search':
 | 
						|
            model_manager = ModelManager()
 | 
						|
            rerank_model_instance = model_manager.get_model_instance(
 | 
						|
                tenant_id=dataset.tenant_id,
 | 
						|
                provider=retrieval_model['reranking_model']['reranking_provider_name'],
 | 
						|
                model_type=ModelType.RERANK,
 | 
						|
                model=retrieval_model['reranking_model']['reranking_model_name']
 | 
						|
            )
 | 
						|
 | 
						|
            rerank_runner = RerankRunner(rerank_model_instance)
 | 
						|
            all_documents = rerank_runner.run(
 | 
						|
                query=query,
 | 
						|
                documents=all_documents,
 | 
						|
                score_threshold=retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
 | 
						|
                top_n=retrieval_model['top_k'],
 | 
						|
                user=f"account-{account.id}"
 | 
						|
            )
 | 
						|
 | 
						|
        end = time.perf_counter()
 | 
						|
        logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
 | 
						|
 | 
						|
        dataset_query = DatasetQuery(
 | 
						|
            dataset_id=dataset.id,
 | 
						|
            content=query,
 | 
						|
            source='hit_testing',
 | 
						|
            created_by_role='account',
 | 
						|
            created_by=account.id
 | 
						|
        )
 | 
						|
 | 
						|
        db.session.add(dataset_query)
 | 
						|
        db.session.commit()
 | 
						|
 | 
						|
        return cls.compact_retrieve_response(dataset, embeddings, query, all_documents)
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def compact_retrieve_response(cls, dataset: Dataset, embeddings: Embeddings, query: str, documents: List[Document]):
 | 
						|
        text_embeddings = [
 | 
						|
            embeddings.embed_query(query)
 | 
						|
        ]
 | 
						|
 | 
						|
        text_embeddings.extend(embeddings.embed_documents([document.page_content for document in documents]))
 | 
						|
 | 
						|
        tsne_position_data = cls.get_tsne_positions_from_embeddings(text_embeddings)
 | 
						|
 | 
						|
        query_position = tsne_position_data.pop(0)
 | 
						|
 | 
						|
        i = 0
 | 
						|
        records = []
 | 
						|
        for document in documents:
 | 
						|
            index_node_id = document.metadata['doc_id']
 | 
						|
 | 
						|
            segment = db.session.query(DocumentSegment).filter(
 | 
						|
                DocumentSegment.dataset_id == dataset.id,
 | 
						|
                DocumentSegment.enabled == True,
 | 
						|
                DocumentSegment.status == 'completed',
 | 
						|
                DocumentSegment.index_node_id == index_node_id
 | 
						|
            ).first()
 | 
						|
 | 
						|
            if not segment:
 | 
						|
                i += 1
 | 
						|
                continue
 | 
						|
 | 
						|
            record = {
 | 
						|
                "segment": segment,
 | 
						|
                "score": document.metadata.get('score', None),
 | 
						|
                "tsne_position": tsne_position_data[i]
 | 
						|
            }
 | 
						|
 | 
						|
            records.append(record)
 | 
						|
 | 
						|
            i += 1
 | 
						|
 | 
						|
        return {
 | 
						|
            "query": {
 | 
						|
                "content": query,
 | 
						|
                "tsne_position": query_position,
 | 
						|
            },
 | 
						|
            "records": records
 | 
						|
        }
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def get_tsne_positions_from_embeddings(cls, embeddings: list):
 | 
						|
        embedding_length = len(embeddings)
 | 
						|
        if embedding_length <= 1:
 | 
						|
            return [{'x': 0, 'y': 0}]
 | 
						|
 | 
						|
        concatenate_data = np.array(embeddings).reshape(embedding_length, -1)
 | 
						|
        # concatenate_data = np.concatenate(embeddings)
 | 
						|
 | 
						|
        perplexity = embedding_length / 2 + 1
 | 
						|
        if perplexity >= embedding_length:
 | 
						|
            perplexity = max(embedding_length - 1, 1)
 | 
						|
 | 
						|
        tsne = TSNE(n_components=2, perplexity=perplexity, early_exaggeration=12.0)
 | 
						|
        data_tsne = tsne.fit_transform(concatenate_data)
 | 
						|
 | 
						|
        tsne_position_data = []
 | 
						|
        for i in range(len(data_tsne)):
 | 
						|
            tsne_position_data.append({'x': float(data_tsne[i][0]), 'y': float(data_tsne[i][1])})
 | 
						|
 | 
						|
        return tsne_position_data
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def hit_testing_args_check(cls, args):
 | 
						|
        query = args['query']
 | 
						|
 | 
						|
        if not query or len(query) > 250:
 | 
						|
            raise ValueError('Query is required and cannot exceed 250 characters')
 | 
						|
 |