mirror of
				https://github.com/langgenius/dify.git
				synced 2025-11-03 20:33:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1210 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1210 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import json
 | 
						|
import math
 | 
						|
import re
 | 
						|
import threading
 | 
						|
from collections import Counter, defaultdict
 | 
						|
from collections.abc import Generator, Mapping
 | 
						|
from typing import Any, Optional, Union, cast
 | 
						|
 | 
						|
from flask import Flask, current_app
 | 
						|
from sqlalchemy import Float, and_, or_, text
 | 
						|
from sqlalchemy import cast as sqlalchemy_cast
 | 
						|
 | 
						|
from core.app.app_config.entities import (
 | 
						|
    DatasetEntity,
 | 
						|
    DatasetRetrieveConfigEntity,
 | 
						|
    MetadataFilteringCondition,
 | 
						|
    ModelConfig,
 | 
						|
)
 | 
						|
from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
 | 
						|
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
 | 
						|
from core.entities.agent_entities import PlanningStrategy
 | 
						|
from core.entities.model_entities import ModelStatus
 | 
						|
from core.memory.token_buffer_memory import TokenBufferMemory
 | 
						|
from core.model_manager import ModelInstance, ModelManager
 | 
						|
from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
 | 
						|
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageRole, PromptMessageTool
 | 
						|
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
 | 
						|
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
 | 
						|
from core.ops.entities.trace_entity import TraceTaskName
 | 
						|
from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
 | 
						|
from core.ops.utils import measure_time
 | 
						|
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
 | 
						|
from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate
 | 
						|
from core.prompt.simple_prompt_transform import ModelMode
 | 
						|
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
 | 
						|
from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
 | 
						|
from core.rag.datasource.retrieval_service import RetrievalService
 | 
						|
from core.rag.entities.context_entities import DocumentContext
 | 
						|
from core.rag.entities.metadata_entities import Condition, MetadataCondition
 | 
						|
from core.rag.index_processor.constant.index_type import IndexType
 | 
						|
from core.rag.models.document import Document
 | 
						|
from core.rag.rerank.rerank_type import RerankMode
 | 
						|
from core.rag.retrieval.retrieval_methods import RetrievalMethod
 | 
						|
from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
 | 
						|
from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
 | 
						|
from core.rag.retrieval.template_prompts import (
 | 
						|
    METADATA_FILTER_ASSISTANT_PROMPT_1,
 | 
						|
    METADATA_FILTER_ASSISTANT_PROMPT_2,
 | 
						|
    METADATA_FILTER_COMPLETION_PROMPT,
 | 
						|
    METADATA_FILTER_SYSTEM_PROMPT,
 | 
						|
    METADATA_FILTER_USER_PROMPT_1,
 | 
						|
    METADATA_FILTER_USER_PROMPT_2,
 | 
						|
    METADATA_FILTER_USER_PROMPT_3,
 | 
						|
)
 | 
						|
from core.tools.utils.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
 | 
						|
from extensions.ext_database import db
 | 
						|
from libs.json_in_md_parser import parse_and_check_json_markdown
 | 
						|
from models.dataset import ChildChunk, Dataset, DatasetMetadata, DatasetQuery, DocumentSegment
 | 
						|
from models.dataset import Document as DatasetDocument
 | 
						|
from services.external_knowledge_service import ExternalDatasetService
 | 
						|
 | 
						|
default_retrieval_model: dict[str, Any] = {
 | 
						|
    "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
 | 
						|
    "reranking_enable": False,
 | 
						|
    "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
 | 
						|
    "top_k": 2,
 | 
						|
    "score_threshold_enabled": False,
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
class DatasetRetrieval:
 | 
						|
    def __init__(self, application_generate_entity=None):
 | 
						|
        self.application_generate_entity = application_generate_entity
 | 
						|
 | 
						|
    def retrieve(
 | 
						|
        self,
 | 
						|
        app_id: str,
 | 
						|
        user_id: str,
 | 
						|
        tenant_id: str,
 | 
						|
        model_config: ModelConfigWithCredentialsEntity,
 | 
						|
        config: DatasetEntity,
 | 
						|
        query: str,
 | 
						|
        invoke_from: InvokeFrom,
 | 
						|
        show_retrieve_source: bool,
 | 
						|
        hit_callback: DatasetIndexToolCallbackHandler,
 | 
						|
        message_id: str,
 | 
						|
        memory: Optional[TokenBufferMemory] = None,
 | 
						|
        inputs: Optional[Mapping[str, Any]] = None,
 | 
						|
    ) -> Optional[str]:
 | 
						|
        """
 | 
						|
        Retrieve dataset.
 | 
						|
        :param app_id: app_id
 | 
						|
        :param user_id: user_id
 | 
						|
        :param tenant_id: tenant id
 | 
						|
        :param model_config: model config
 | 
						|
        :param config: dataset config
 | 
						|
        :param query: query
 | 
						|
        :param invoke_from: invoke from
 | 
						|
        :param show_retrieve_source: show retrieve source
 | 
						|
        :param hit_callback: hit callback
 | 
						|
        :param message_id: message id
 | 
						|
        :param memory: memory
 | 
						|
        :param inputs: inputs
 | 
						|
        :return:
 | 
						|
        """
 | 
						|
        dataset_ids = config.dataset_ids
 | 
						|
        if len(dataset_ids) == 0:
 | 
						|
            return None
 | 
						|
        retrieve_config = config.retrieve_config
 | 
						|
 | 
						|
        # check model is support tool calling
 | 
						|
        model_type_instance = model_config.provider_model_bundle.model_type_instance
 | 
						|
        model_type_instance = cast(LargeLanguageModel, model_type_instance)
 | 
						|
 | 
						|
        model_manager = ModelManager()
 | 
						|
        model_instance = model_manager.get_model_instance(
 | 
						|
            tenant_id=tenant_id, model_type=ModelType.LLM, provider=model_config.provider, model=model_config.model
 | 
						|
        )
 | 
						|
 | 
						|
        # get model schema
 | 
						|
        model_schema = model_type_instance.get_model_schema(
 | 
						|
            model=model_config.model, credentials=model_config.credentials
 | 
						|
        )
 | 
						|
 | 
						|
        if not model_schema:
 | 
						|
            return None
 | 
						|
 | 
						|
        planning_strategy = PlanningStrategy.REACT_ROUTER
 | 
						|
        features = model_schema.features
 | 
						|
        if features:
 | 
						|
            if ModelFeature.TOOL_CALL in features or ModelFeature.MULTI_TOOL_CALL in features:
 | 
						|
                planning_strategy = PlanningStrategy.ROUTER
 | 
						|
        available_datasets = []
 | 
						|
        for dataset_id in dataset_ids:
 | 
						|
            # get dataset from dataset id
 | 
						|
            dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 | 
						|
 | 
						|
            # pass if dataset is not available
 | 
						|
            if not dataset:
 | 
						|
                continue
 | 
						|
 | 
						|
            # pass if dataset is not available
 | 
						|
            if dataset and dataset.available_document_count == 0 and dataset.provider != "external":
 | 
						|
                continue
 | 
						|
 | 
						|
            available_datasets.append(dataset)
 | 
						|
        if inputs:
 | 
						|
            inputs = {key: str(value) for key, value in inputs.items()}
 | 
						|
        else:
 | 
						|
            inputs = {}
 | 
						|
        available_datasets_ids = [dataset.id for dataset in available_datasets]
 | 
						|
        metadata_filter_document_ids, metadata_condition = self.get_metadata_filter_condition(
 | 
						|
            available_datasets_ids,
 | 
						|
            query,
 | 
						|
            tenant_id,
 | 
						|
            user_id,
 | 
						|
            retrieve_config.metadata_filtering_mode,  # type: ignore
 | 
						|
            retrieve_config.metadata_model_config,  # type: ignore
 | 
						|
            retrieve_config.metadata_filtering_conditions,
 | 
						|
            inputs,
 | 
						|
        )
 | 
						|
 | 
						|
        all_documents = []
 | 
						|
        user_from = "account" if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end_user"
 | 
						|
        if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
 | 
						|
            all_documents = self.single_retrieve(
 | 
						|
                app_id,
 | 
						|
                tenant_id,
 | 
						|
                user_id,
 | 
						|
                user_from,
 | 
						|
                available_datasets,
 | 
						|
                query,
 | 
						|
                model_instance,
 | 
						|
                model_config,
 | 
						|
                planning_strategy,
 | 
						|
                message_id,
 | 
						|
                metadata_filter_document_ids,
 | 
						|
                metadata_condition,
 | 
						|
            )
 | 
						|
        elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
 | 
						|
            all_documents = self.multiple_retrieve(
 | 
						|
                app_id,
 | 
						|
                tenant_id,
 | 
						|
                user_id,
 | 
						|
                user_from,
 | 
						|
                available_datasets,
 | 
						|
                query,
 | 
						|
                retrieve_config.top_k or 0,
 | 
						|
                retrieve_config.score_threshold or 0,
 | 
						|
                retrieve_config.rerank_mode or "reranking_model",
 | 
						|
                retrieve_config.reranking_model,
 | 
						|
                retrieve_config.weights,
 | 
						|
                True if retrieve_config.reranking_enabled is None else retrieve_config.reranking_enabled,
 | 
						|
                message_id,
 | 
						|
                metadata_filter_document_ids,
 | 
						|
                metadata_condition,
 | 
						|
            )
 | 
						|
 | 
						|
        dify_documents = [item for item in all_documents if item.provider == "dify"]
 | 
						|
        external_documents = [item for item in all_documents if item.provider == "external"]
 | 
						|
        document_context_list = []
 | 
						|
        retrieval_resource_list = []
 | 
						|
        # deal with external documents
 | 
						|
        for item in external_documents:
 | 
						|
            document_context_list.append(DocumentContext(content=item.page_content, score=item.metadata.get("score")))
 | 
						|
            source = {
 | 
						|
                "dataset_id": item.metadata.get("dataset_id"),
 | 
						|
                "dataset_name": item.metadata.get("dataset_name"),
 | 
						|
                "document_id": item.metadata.get("document_id") or item.metadata.get("title"),
 | 
						|
                "document_name": item.metadata.get("title"),
 | 
						|
                "data_source_type": "external",
 | 
						|
                "retriever_from": invoke_from.to_source(),
 | 
						|
                "score": item.metadata.get("score"),
 | 
						|
                "content": item.page_content,
 | 
						|
            }
 | 
						|
            retrieval_resource_list.append(source)
 | 
						|
        # deal with dify documents
 | 
						|
        if dify_documents:
 | 
						|
            records = RetrievalService.format_retrieval_documents(dify_documents)
 | 
						|
            if records:
 | 
						|
                for record in records:
 | 
						|
                    segment = record.segment
 | 
						|
                    if segment.answer:
 | 
						|
                        document_context_list.append(
 | 
						|
                            DocumentContext(
 | 
						|
                                content=f"question:{segment.get_sign_content()} answer:{segment.answer}",
 | 
						|
                                score=record.score,
 | 
						|
                            )
 | 
						|
                        )
 | 
						|
                    else:
 | 
						|
                        document_context_list.append(
 | 
						|
                            DocumentContext(
 | 
						|
                                content=segment.get_sign_content(),
 | 
						|
                                score=record.score,
 | 
						|
                            )
 | 
						|
                        )
 | 
						|
                if show_retrieve_source:
 | 
						|
                    for record in records:
 | 
						|
                        segment = record.segment
 | 
						|
                        dataset = db.session.query(Dataset).filter_by(id=segment.dataset_id).first()
 | 
						|
                        document = (
 | 
						|
                            db.session.query(DatasetDocument)
 | 
						|
                            .filter(
 | 
						|
                                DatasetDocument.id == segment.document_id,
 | 
						|
                                DatasetDocument.enabled == True,
 | 
						|
                                DatasetDocument.archived == False,
 | 
						|
                            )
 | 
						|
                            .first()
 | 
						|
                        )
 | 
						|
                        if dataset and document:
 | 
						|
                            source = {
 | 
						|
                                "dataset_id": dataset.id,
 | 
						|
                                "dataset_name": dataset.name,
 | 
						|
                                "document_id": document.id,
 | 
						|
                                "document_name": document.name,
 | 
						|
                                "data_source_type": document.data_source_type,
 | 
						|
                                "segment_id": segment.id,
 | 
						|
                                "retriever_from": invoke_from.to_source(),
 | 
						|
                                "score": record.score or 0.0,
 | 
						|
                                "doc_metadata": document.doc_metadata,
 | 
						|
                            }
 | 
						|
 | 
						|
                            if invoke_from.to_source() == "dev":
 | 
						|
                                source["hit_count"] = segment.hit_count
 | 
						|
                                source["word_count"] = segment.word_count
 | 
						|
                                source["segment_position"] = segment.position
 | 
						|
                                source["index_node_hash"] = segment.index_node_hash
 | 
						|
                            if segment.answer:
 | 
						|
                                source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
 | 
						|
                            else:
 | 
						|
                                source["content"] = segment.content
 | 
						|
                            retrieval_resource_list.append(source)
 | 
						|
        if hit_callback and retrieval_resource_list:
 | 
						|
            retrieval_resource_list = sorted(retrieval_resource_list, key=lambda x: x.get("score") or 0.0, reverse=True)
 | 
						|
            for position, item in enumerate(retrieval_resource_list, start=1):
 | 
						|
                item["position"] = position
 | 
						|
            hit_callback.return_retriever_resource_info(retrieval_resource_list)
 | 
						|
        if document_context_list:
 | 
						|
            document_context_list = sorted(document_context_list, key=lambda x: x.score or 0.0, reverse=True)
 | 
						|
            return str("\n".join([document_context.content for document_context in document_context_list]))
 | 
						|
        return ""
 | 
						|
 | 
						|
    def single_retrieve(
 | 
						|
        self,
 | 
						|
        app_id: str,
 | 
						|
        tenant_id: str,
 | 
						|
        user_id: str,
 | 
						|
        user_from: str,
 | 
						|
        available_datasets: list,
 | 
						|
        query: str,
 | 
						|
        model_instance: ModelInstance,
 | 
						|
        model_config: ModelConfigWithCredentialsEntity,
 | 
						|
        planning_strategy: PlanningStrategy,
 | 
						|
        message_id: Optional[str] = None,
 | 
						|
        metadata_filter_document_ids: Optional[dict[str, list[str]]] = None,
 | 
						|
        metadata_condition: Optional[MetadataCondition] = None,
 | 
						|
    ):
 | 
						|
        tools = []
 | 
						|
        for dataset in available_datasets:
 | 
						|
            description = dataset.description
 | 
						|
            if not description:
 | 
						|
                description = "useful for when you want to answer queries about the " + dataset.name
 | 
						|
 | 
						|
            description = description.replace("\n", "").replace("\r", "")
 | 
						|
            message_tool = PromptMessageTool(
 | 
						|
                name=dataset.id,
 | 
						|
                description=description,
 | 
						|
                parameters={
 | 
						|
                    "type": "object",
 | 
						|
                    "properties": {},
 | 
						|
                    "required": [],
 | 
						|
                },
 | 
						|
            )
 | 
						|
            tools.append(message_tool)
 | 
						|
        dataset_id = None
 | 
						|
        if planning_strategy == PlanningStrategy.REACT_ROUTER:
 | 
						|
            react_multi_dataset_router = ReactMultiDatasetRouter()
 | 
						|
            dataset_id = react_multi_dataset_router.invoke(
 | 
						|
                query, tools, model_config, model_instance, user_id, tenant_id
 | 
						|
            )
 | 
						|
 | 
						|
        elif planning_strategy == PlanningStrategy.ROUTER:
 | 
						|
            function_call_router = FunctionCallMultiDatasetRouter()
 | 
						|
            dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)
 | 
						|
 | 
						|
        if dataset_id:
 | 
						|
            # get retrieval model config
 | 
						|
            dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 | 
						|
            if dataset:
 | 
						|
                results = []
 | 
						|
                if dataset.provider == "external":
 | 
						|
                    external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
 | 
						|
                        tenant_id=dataset.tenant_id,
 | 
						|
                        dataset_id=dataset_id,
 | 
						|
                        query=query,
 | 
						|
                        external_retrieval_parameters=dataset.retrieval_model,
 | 
						|
                        metadata_condition=metadata_condition,
 | 
						|
                    )
 | 
						|
                    for external_document in external_documents:
 | 
						|
                        document = Document(
 | 
						|
                            page_content=external_document.get("content"),
 | 
						|
                            metadata=external_document.get("metadata"),
 | 
						|
                            provider="external",
 | 
						|
                        )
 | 
						|
                        if document.metadata is not None:
 | 
						|
                            document.metadata["score"] = external_document.get("score")
 | 
						|
                            document.metadata["title"] = external_document.get("title")
 | 
						|
                            document.metadata["dataset_id"] = dataset_id
 | 
						|
                            document.metadata["dataset_name"] = dataset.name
 | 
						|
                        results.append(document)
 | 
						|
                else:
 | 
						|
                    if metadata_condition and not metadata_filter_document_ids:
 | 
						|
                        return []
 | 
						|
                    document_ids_filter = None
 | 
						|
                    if metadata_filter_document_ids:
 | 
						|
                        document_ids = metadata_filter_document_ids.get(dataset.id, [])
 | 
						|
                        if document_ids:
 | 
						|
                            document_ids_filter = document_ids
 | 
						|
                        else:
 | 
						|
                            return []
 | 
						|
                    retrieval_model_config = dataset.retrieval_model or default_retrieval_model
 | 
						|
 | 
						|
                    # get top k
 | 
						|
                    top_k = retrieval_model_config["top_k"]
 | 
						|
                    # get retrieval method
 | 
						|
                    if dataset.indexing_technique == "economy":
 | 
						|
                        retrieval_method = "keyword_search"
 | 
						|
                    else:
 | 
						|
                        retrieval_method = retrieval_model_config["search_method"]
 | 
						|
                    # get reranking model
 | 
						|
                    reranking_model = (
 | 
						|
                        retrieval_model_config["reranking_model"]
 | 
						|
                        if retrieval_model_config["reranking_enable"]
 | 
						|
                        else None
 | 
						|
                    )
 | 
						|
                    # get score threshold
 | 
						|
                    score_threshold = 0.0
 | 
						|
                    score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
 | 
						|
                    if score_threshold_enabled:
 | 
						|
                        score_threshold = retrieval_model_config.get("score_threshold", 0.0)
 | 
						|
 | 
						|
                    with measure_time() as timer:
 | 
						|
                        results = RetrievalService.retrieve(
 | 
						|
                            retrieval_method=retrieval_method,
 | 
						|
                            dataset_id=dataset.id,
 | 
						|
                            query=query,
 | 
						|
                            top_k=top_k,
 | 
						|
                            score_threshold=score_threshold,
 | 
						|
                            reranking_model=reranking_model,
 | 
						|
                            reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
 | 
						|
                            weights=retrieval_model_config.get("weights", None),
 | 
						|
                            document_ids_filter=document_ids_filter,
 | 
						|
                        )
 | 
						|
                self._on_query(query, [dataset_id], app_id, user_from, user_id)
 | 
						|
 | 
						|
                if results:
 | 
						|
                    self._on_retrieval_end(results, message_id, timer)
 | 
						|
 | 
						|
                return results
 | 
						|
        return []
 | 
						|
 | 
						|
    def multiple_retrieve(
 | 
						|
        self,
 | 
						|
        app_id: str,
 | 
						|
        tenant_id: str,
 | 
						|
        user_id: str,
 | 
						|
        user_from: str,
 | 
						|
        available_datasets: list,
 | 
						|
        query: str,
 | 
						|
        top_k: int,
 | 
						|
        score_threshold: float,
 | 
						|
        reranking_mode: str,
 | 
						|
        reranking_model: Optional[dict] = None,
 | 
						|
        weights: Optional[dict[str, Any]] = None,
 | 
						|
        reranking_enable: bool = True,
 | 
						|
        message_id: Optional[str] = None,
 | 
						|
        metadata_filter_document_ids: Optional[dict[str, list[str]]] = None,
 | 
						|
        metadata_condition: Optional[MetadataCondition] = None,
 | 
						|
    ):
 | 
						|
        if not available_datasets:
 | 
						|
            return []
 | 
						|
        threads = []
 | 
						|
        all_documents: list[Document] = []
 | 
						|
        dataset_ids = [dataset.id for dataset in available_datasets]
 | 
						|
        index_type_check = all(
 | 
						|
            item.indexing_technique == available_datasets[0].indexing_technique for item in available_datasets
 | 
						|
        )
 | 
						|
        if not index_type_check and (not reranking_enable or reranking_mode != RerankMode.RERANKING_MODEL):
 | 
						|
            raise ValueError(
 | 
						|
                "The configured knowledge base list have different indexing technique, please set reranking model."
 | 
						|
            )
 | 
						|
        index_type = available_datasets[0].indexing_technique
 | 
						|
        if index_type == "high_quality":
 | 
						|
            embedding_model_check = all(
 | 
						|
                item.embedding_model == available_datasets[0].embedding_model for item in available_datasets
 | 
						|
            )
 | 
						|
            embedding_model_provider_check = all(
 | 
						|
                item.embedding_model_provider == available_datasets[0].embedding_model_provider
 | 
						|
                for item in available_datasets
 | 
						|
            )
 | 
						|
            if (
 | 
						|
                reranking_enable
 | 
						|
                and reranking_mode == "weighted_score"
 | 
						|
                and (not embedding_model_check or not embedding_model_provider_check)
 | 
						|
            ):
 | 
						|
                raise ValueError(
 | 
						|
                    "The configured knowledge base list have different embedding model, please set reranking model."
 | 
						|
                )
 | 
						|
            if reranking_enable and reranking_mode == RerankMode.WEIGHTED_SCORE:
 | 
						|
                if weights is not None:
 | 
						|
                    weights["vector_setting"]["embedding_provider_name"] = available_datasets[
 | 
						|
                        0
 | 
						|
                    ].embedding_model_provider
 | 
						|
                    weights["vector_setting"]["embedding_model_name"] = available_datasets[0].embedding_model
 | 
						|
 | 
						|
        for dataset in available_datasets:
 | 
						|
            index_type = dataset.indexing_technique
 | 
						|
            document_ids_filter = None
 | 
						|
            if dataset.provider != "external":
 | 
						|
                if metadata_condition and not metadata_filter_document_ids:
 | 
						|
                    continue
 | 
						|
                if metadata_filter_document_ids:
 | 
						|
                    document_ids = metadata_filter_document_ids.get(dataset.id, [])
 | 
						|
                    if document_ids:
 | 
						|
                        document_ids_filter = document_ids
 | 
						|
                    else:
 | 
						|
                        continue
 | 
						|
            retrieval_thread = threading.Thread(
 | 
						|
                target=self._retriever,
 | 
						|
                kwargs={
 | 
						|
                    "flask_app": current_app._get_current_object(),  # type: ignore
 | 
						|
                    "dataset_id": dataset.id,
 | 
						|
                    "query": query,
 | 
						|
                    "top_k": top_k,
 | 
						|
                    "all_documents": all_documents,
 | 
						|
                    "document_ids_filter": document_ids_filter,
 | 
						|
                    "metadata_condition": metadata_condition,
 | 
						|
                },
 | 
						|
            )
 | 
						|
            threads.append(retrieval_thread)
 | 
						|
            retrieval_thread.start()
 | 
						|
        for thread in threads:
 | 
						|
            thread.join()
 | 
						|
 | 
						|
        with measure_time() as timer:
 | 
						|
            if reranking_enable:
 | 
						|
                # do rerank for searched documents
 | 
						|
                data_post_processor = DataPostProcessor(tenant_id, reranking_mode, reranking_model, weights, False)
 | 
						|
 | 
						|
                all_documents = data_post_processor.invoke(
 | 
						|
                    query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
 | 
						|
                )
 | 
						|
            else:
 | 
						|
                if index_type == "economy":
 | 
						|
                    all_documents = self.calculate_keyword_score(query, all_documents, top_k)
 | 
						|
                elif index_type == "high_quality":
 | 
						|
                    all_documents = self.calculate_vector_score(all_documents, top_k, score_threshold)
 | 
						|
 | 
						|
        self._on_query(query, dataset_ids, app_id, user_from, user_id)
 | 
						|
 | 
						|
        if all_documents:
 | 
						|
            self._on_retrieval_end(all_documents, message_id, timer)
 | 
						|
 | 
						|
        return all_documents
 | 
						|
 | 
						|
    def _on_retrieval_end(
 | 
						|
        self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
 | 
						|
    ) -> None:
 | 
						|
        """Handle retrieval end."""
 | 
						|
        dify_documents = [document for document in documents if document.provider == "dify"]
 | 
						|
        for document in dify_documents:
 | 
						|
            if document.metadata is not None:
 | 
						|
                dataset_document = (
 | 
						|
                    db.session.query(DatasetDocument)
 | 
						|
                    .filter(DatasetDocument.id == document.metadata["document_id"])
 | 
						|
                    .first()
 | 
						|
                )
 | 
						|
                if dataset_document:
 | 
						|
                    if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
 | 
						|
                        child_chunk = (
 | 
						|
                            db.session.query(ChildChunk)
 | 
						|
                            .filter(
 | 
						|
                                ChildChunk.index_node_id == document.metadata["doc_id"],
 | 
						|
                                ChildChunk.dataset_id == dataset_document.dataset_id,
 | 
						|
                                ChildChunk.document_id == dataset_document.id,
 | 
						|
                            )
 | 
						|
                            .first()
 | 
						|
                        )
 | 
						|
                        if child_chunk:
 | 
						|
                            segment = (
 | 
						|
                                db.session.query(DocumentSegment)
 | 
						|
                                .filter(DocumentSegment.id == child_chunk.segment_id)
 | 
						|
                                .update(
 | 
						|
                                    {DocumentSegment.hit_count: DocumentSegment.hit_count + 1},
 | 
						|
                                    synchronize_session=False,
 | 
						|
                                )
 | 
						|
                            )
 | 
						|
                            db.session.commit()
 | 
						|
                    else:
 | 
						|
                        query = db.session.query(DocumentSegment).filter(
 | 
						|
                            DocumentSegment.index_node_id == document.metadata["doc_id"]
 | 
						|
                        )
 | 
						|
 | 
						|
                        # if 'dataset_id' in document.metadata:
 | 
						|
                        if "dataset_id" in document.metadata:
 | 
						|
                            query = query.filter(DocumentSegment.dataset_id == document.metadata["dataset_id"])
 | 
						|
 | 
						|
                        # add hit count to document segment
 | 
						|
                        query.update(
 | 
						|
                            {DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False
 | 
						|
                        )
 | 
						|
 | 
						|
                    db.session.commit()
 | 
						|
 | 
						|
        # get tracing instance
 | 
						|
        trace_manager: TraceQueueManager | None = (
 | 
						|
            self.application_generate_entity.trace_manager if self.application_generate_entity else None
 | 
						|
        )
 | 
						|
        if trace_manager:
 | 
						|
            trace_manager.add_trace_task(
 | 
						|
                TraceTask(
 | 
						|
                    TraceTaskName.DATASET_RETRIEVAL_TRACE, message_id=message_id, documents=documents, timer=timer
 | 
						|
                )
 | 
						|
            )
 | 
						|
 | 
						|
    def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
 | 
						|
        """
 | 
						|
        Handle query.
 | 
						|
        """
 | 
						|
        if not query:
 | 
						|
            return
 | 
						|
        dataset_queries = []
 | 
						|
        for dataset_id in dataset_ids:
 | 
						|
            dataset_query = DatasetQuery(
 | 
						|
                dataset_id=dataset_id,
 | 
						|
                content=query,
 | 
						|
                source="app",
 | 
						|
                source_app_id=app_id,
 | 
						|
                created_by_role=user_from,
 | 
						|
                created_by=user_id,
 | 
						|
            )
 | 
						|
            dataset_queries.append(dataset_query)
 | 
						|
        if dataset_queries:
 | 
						|
            db.session.add_all(dataset_queries)
 | 
						|
        db.session.commit()
 | 
						|
 | 
						|
    def _retriever(
 | 
						|
        self,
 | 
						|
        flask_app: Flask,
 | 
						|
        dataset_id: str,
 | 
						|
        query: str,
 | 
						|
        top_k: int,
 | 
						|
        all_documents: list,
 | 
						|
        document_ids_filter: Optional[list[str]] = None,
 | 
						|
        metadata_condition: Optional[MetadataCondition] = None,
 | 
						|
    ):
 | 
						|
        with flask_app.app_context():
 | 
						|
            dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 | 
						|
 | 
						|
            if not dataset:
 | 
						|
                return []
 | 
						|
 | 
						|
            if dataset.provider == "external":
 | 
						|
                external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
 | 
						|
                    tenant_id=dataset.tenant_id,
 | 
						|
                    dataset_id=dataset_id,
 | 
						|
                    query=query,
 | 
						|
                    external_retrieval_parameters=dataset.retrieval_model,
 | 
						|
                    metadata_condition=metadata_condition,
 | 
						|
                )
 | 
						|
                for external_document in external_documents:
 | 
						|
                    document = Document(
 | 
						|
                        page_content=external_document.get("content"),
 | 
						|
                        metadata=external_document.get("metadata"),
 | 
						|
                        provider="external",
 | 
						|
                    )
 | 
						|
                    if document.metadata is not None:
 | 
						|
                        document.metadata["score"] = external_document.get("score")
 | 
						|
                        document.metadata["title"] = external_document.get("title")
 | 
						|
                        document.metadata["dataset_id"] = dataset_id
 | 
						|
                        document.metadata["dataset_name"] = dataset.name
 | 
						|
                    all_documents.append(document)
 | 
						|
            else:
 | 
						|
                # get retrieval model , if the model is not setting , using default
 | 
						|
                retrieval_model = dataset.retrieval_model or default_retrieval_model
 | 
						|
 | 
						|
                if dataset.indexing_technique == "economy":
 | 
						|
                    # use keyword table query
 | 
						|
                    documents = RetrievalService.retrieve(
 | 
						|
                        retrieval_method="keyword_search",
 | 
						|
                        dataset_id=dataset.id,
 | 
						|
                        query=query,
 | 
						|
                        top_k=top_k,
 | 
						|
                        document_ids_filter=document_ids_filter,
 | 
						|
                    )
 | 
						|
                    if documents:
 | 
						|
                        all_documents.extend(documents)
 | 
						|
                else:
 | 
						|
                    if top_k > 0:
 | 
						|
                        # retrieval source
 | 
						|
                        documents = RetrievalService.retrieve(
 | 
						|
                            retrieval_method=retrieval_model["search_method"],
 | 
						|
                            dataset_id=dataset.id,
 | 
						|
                            query=query,
 | 
						|
                            top_k=retrieval_model.get("top_k") or 2,
 | 
						|
                            score_threshold=retrieval_model.get("score_threshold", 0.0)
 | 
						|
                            if retrieval_model["score_threshold_enabled"]
 | 
						|
                            else 0.0,
 | 
						|
                            reranking_model=retrieval_model.get("reranking_model", None)
 | 
						|
                            if retrieval_model["reranking_enable"]
 | 
						|
                            else None,
 | 
						|
                            reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
 | 
						|
                            weights=retrieval_model.get("weights", None),
 | 
						|
                            document_ids_filter=document_ids_filter,
 | 
						|
                        )
 | 
						|
 | 
						|
                        all_documents.extend(documents)
 | 
						|
 | 
						|
    def to_dataset_retriever_tool(
 | 
						|
        self,
 | 
						|
        tenant_id: str,
 | 
						|
        dataset_ids: list[str],
 | 
						|
        retrieve_config: DatasetRetrieveConfigEntity,
 | 
						|
        return_resource: bool,
 | 
						|
        invoke_from: InvokeFrom,
 | 
						|
        hit_callback: DatasetIndexToolCallbackHandler,
 | 
						|
        user_id: str,
 | 
						|
        inputs: dict,
 | 
						|
    ) -> Optional[list[DatasetRetrieverBaseTool]]:
 | 
						|
        """
 | 
						|
        A dataset tool is a tool that can be used to retrieve information from a dataset
 | 
						|
        :param tenant_id: tenant id
 | 
						|
        :param dataset_ids: dataset ids
 | 
						|
        :param retrieve_config: retrieve config
 | 
						|
        :param return_resource: return resource
 | 
						|
        :param invoke_from: invoke from
 | 
						|
        :param hit_callback: hit callback
 | 
						|
        """
 | 
						|
        tools = []
 | 
						|
        available_datasets = []
 | 
						|
        for dataset_id in dataset_ids:
 | 
						|
            # get dataset from dataset id
 | 
						|
            dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 | 
						|
 | 
						|
            # pass if dataset is not available
 | 
						|
            if not dataset:
 | 
						|
                continue
 | 
						|
 | 
						|
            # pass if dataset is not available
 | 
						|
            if dataset and dataset.provider != "external" and dataset.available_document_count == 0:
 | 
						|
                continue
 | 
						|
 | 
						|
            available_datasets.append(dataset)
 | 
						|
 | 
						|
        if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
 | 
						|
            # get retrieval model config
 | 
						|
            default_retrieval_model = {
 | 
						|
                "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
 | 
						|
                "reranking_enable": False,
 | 
						|
                "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
 | 
						|
                "top_k": 2,
 | 
						|
                "score_threshold_enabled": False,
 | 
						|
            }
 | 
						|
 | 
						|
            for dataset in available_datasets:
 | 
						|
                retrieval_model_config = dataset.retrieval_model or default_retrieval_model
 | 
						|
 | 
						|
                # get top k
 | 
						|
                top_k = retrieval_model_config["top_k"]
 | 
						|
 | 
						|
                # get score threshold
 | 
						|
                score_threshold = None
 | 
						|
                score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
 | 
						|
                if score_threshold_enabled:
 | 
						|
                    score_threshold = retrieval_model_config.get("score_threshold")
 | 
						|
 | 
						|
                from core.tools.utils.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
 | 
						|
 | 
						|
                tool = DatasetRetrieverTool.from_dataset(
 | 
						|
                    dataset=dataset,
 | 
						|
                    top_k=top_k,
 | 
						|
                    score_threshold=score_threshold,
 | 
						|
                    hit_callbacks=[hit_callback],
 | 
						|
                    return_resource=return_resource,
 | 
						|
                    retriever_from=invoke_from.to_source(),
 | 
						|
                    retrieve_config=retrieve_config,
 | 
						|
                    user_id=user_id,
 | 
						|
                    inputs=inputs,
 | 
						|
                )
 | 
						|
 | 
						|
                tools.append(tool)
 | 
						|
        elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
 | 
						|
            from core.tools.utils.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
 | 
						|
 | 
						|
            if retrieve_config.reranking_model is None:
 | 
						|
                raise ValueError("Reranking model is required for multiple retrieval")
 | 
						|
 | 
						|
            tool = DatasetMultiRetrieverTool.from_dataset(
 | 
						|
                dataset_ids=[dataset.id for dataset in available_datasets],
 | 
						|
                tenant_id=tenant_id,
 | 
						|
                top_k=retrieve_config.top_k or 2,
 | 
						|
                score_threshold=retrieve_config.score_threshold,
 | 
						|
                hit_callbacks=[hit_callback],
 | 
						|
                return_resource=return_resource,
 | 
						|
                retriever_from=invoke_from.to_source(),
 | 
						|
                reranking_provider_name=retrieve_config.reranking_model.get("reranking_provider_name"),
 | 
						|
                reranking_model_name=retrieve_config.reranking_model.get("reranking_model_name"),
 | 
						|
            )
 | 
						|
 | 
						|
            tools.append(tool)
 | 
						|
 | 
						|
        return tools
 | 
						|
 | 
						|
    def calculate_keyword_score(self, query: str, documents: list[Document], top_k: int) -> list[Document]:
 | 
						|
        """
 | 
						|
        Calculate keywords scores
 | 
						|
        :param query: search query
 | 
						|
        :param documents: documents for reranking
 | 
						|
        :param top_k: top k
 | 
						|
 | 
						|
        :return:
 | 
						|
        """
 | 
						|
        keyword_table_handler = JiebaKeywordTableHandler()
 | 
						|
        query_keywords = keyword_table_handler.extract_keywords(query, None)
 | 
						|
        documents_keywords = []
 | 
						|
        for document in documents:
 | 
						|
            if document.metadata is not None:
 | 
						|
                # get the document keywords
 | 
						|
                document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
 | 
						|
                document.metadata["keywords"] = document_keywords
 | 
						|
                documents_keywords.append(document_keywords)
 | 
						|
 | 
						|
        # Counter query keywords(TF)
 | 
						|
        query_keyword_counts = Counter(query_keywords)
 | 
						|
 | 
						|
        # total documents
 | 
						|
        total_documents = len(documents)
 | 
						|
 | 
						|
        # calculate all documents' keywords IDF
 | 
						|
        all_keywords = set()
 | 
						|
        for document_keywords in documents_keywords:
 | 
						|
            all_keywords.update(document_keywords)
 | 
						|
 | 
						|
        keyword_idf = {}
 | 
						|
        for keyword in all_keywords:
 | 
						|
            # calculate include query keywords' documents
 | 
						|
            doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)
 | 
						|
            # IDF
 | 
						|
            keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1
 | 
						|
 | 
						|
        query_tfidf = {}
 | 
						|
 | 
						|
        for keyword, count in query_keyword_counts.items():
 | 
						|
            tf = count
 | 
						|
            idf = keyword_idf.get(keyword, 0)
 | 
						|
            query_tfidf[keyword] = tf * idf
 | 
						|
 | 
						|
        # calculate all documents' TF-IDF
 | 
						|
        documents_tfidf = []
 | 
						|
        for document_keywords in documents_keywords:
 | 
						|
            document_keyword_counts = Counter(document_keywords)
 | 
						|
            document_tfidf = {}
 | 
						|
            for keyword, count in document_keyword_counts.items():
 | 
						|
                tf = count
 | 
						|
                idf = keyword_idf.get(keyword, 0)
 | 
						|
                document_tfidf[keyword] = tf * idf
 | 
						|
            documents_tfidf.append(document_tfidf)
 | 
						|
 | 
						|
        def cosine_similarity(vec1, vec2):
 | 
						|
            intersection = set(vec1.keys()) & set(vec2.keys())
 | 
						|
            numerator = sum(vec1[x] * vec2[x] for x in intersection)
 | 
						|
 | 
						|
            sum1 = sum(vec1[x] ** 2 for x in vec1)
 | 
						|
            sum2 = sum(vec2[x] ** 2 for x in vec2)
 | 
						|
            denominator = math.sqrt(sum1) * math.sqrt(sum2)
 | 
						|
 | 
						|
            if not denominator:
 | 
						|
                return 0.0
 | 
						|
            else:
 | 
						|
                return float(numerator) / denominator
 | 
						|
 | 
						|
        similarities = []
 | 
						|
        for document_tfidf in documents_tfidf:
 | 
						|
            similarity = cosine_similarity(query_tfidf, document_tfidf)
 | 
						|
            similarities.append(similarity)
 | 
						|
 | 
						|
        for document, score in zip(documents, similarities):
 | 
						|
            # format document
 | 
						|
            if document.metadata is not None:
 | 
						|
                document.metadata["score"] = score
 | 
						|
        documents = sorted(documents, key=lambda x: x.metadata.get("score", 0) if x.metadata else 0, reverse=True)
 | 
						|
        return documents[:top_k] if top_k else documents
 | 
						|
 | 
						|
    def calculate_vector_score(
 | 
						|
        self, all_documents: list[Document], top_k: int, score_threshold: float
 | 
						|
    ) -> list[Document]:
 | 
						|
        filter_documents = []
 | 
						|
        for document in all_documents:
 | 
						|
            if score_threshold is None or (document.metadata and document.metadata.get("score", 0) >= score_threshold):
 | 
						|
                filter_documents.append(document)
 | 
						|
 | 
						|
        if not filter_documents:
 | 
						|
            return []
 | 
						|
        filter_documents = sorted(
 | 
						|
            filter_documents, key=lambda x: x.metadata.get("score", 0) if x.metadata else 0, reverse=True
 | 
						|
        )
 | 
						|
        return filter_documents[:top_k] if top_k else filter_documents
 | 
						|
 | 
						|
    def get_metadata_filter_condition(
 | 
						|
        self,
 | 
						|
        dataset_ids: list,
 | 
						|
        query: str,
 | 
						|
        tenant_id: str,
 | 
						|
        user_id: str,
 | 
						|
        metadata_filtering_mode: str,
 | 
						|
        metadata_model_config: ModelConfig,
 | 
						|
        metadata_filtering_conditions: Optional[MetadataFilteringCondition],
 | 
						|
        inputs: dict,
 | 
						|
    ) -> tuple[Optional[dict[str, list[str]]], Optional[MetadataCondition]]:
 | 
						|
        document_query = db.session.query(DatasetDocument).filter(
 | 
						|
            DatasetDocument.dataset_id.in_(dataset_ids),
 | 
						|
            DatasetDocument.indexing_status == "completed",
 | 
						|
            DatasetDocument.enabled == True,
 | 
						|
            DatasetDocument.archived == False,
 | 
						|
        )
 | 
						|
        filters = []  # type: ignore
 | 
						|
        metadata_condition = None
 | 
						|
        if metadata_filtering_mode == "disabled":
 | 
						|
            return None, None
 | 
						|
        elif metadata_filtering_mode == "automatic":
 | 
						|
            automatic_metadata_filters = self._automatic_metadata_filter_func(
 | 
						|
                dataset_ids, query, tenant_id, user_id, metadata_model_config
 | 
						|
            )
 | 
						|
            if automatic_metadata_filters:
 | 
						|
                conditions = []
 | 
						|
                for sequence, filter in enumerate(automatic_metadata_filters):
 | 
						|
                    self._process_metadata_filter_func(
 | 
						|
                        sequence,
 | 
						|
                        filter.get("condition"),  # type: ignore
 | 
						|
                        filter.get("metadata_name"),  # type: ignore
 | 
						|
                        filter.get("value"),
 | 
						|
                        filters,  # type: ignore
 | 
						|
                    )
 | 
						|
                    conditions.append(
 | 
						|
                        Condition(
 | 
						|
                            name=filter.get("metadata_name"),  # type: ignore
 | 
						|
                            comparison_operator=filter.get("condition"),  # type: ignore
 | 
						|
                            value=filter.get("value"),
 | 
						|
                        )
 | 
						|
                    )
 | 
						|
                metadata_condition = MetadataCondition(
 | 
						|
                    logical_operator=metadata_filtering_conditions.logical_operator
 | 
						|
                    if metadata_filtering_conditions
 | 
						|
                    else "or",  # type: ignore
 | 
						|
                    conditions=conditions,
 | 
						|
                )
 | 
						|
        elif metadata_filtering_mode == "manual":
 | 
						|
            if metadata_filtering_conditions:
 | 
						|
                conditions = []
 | 
						|
                for sequence, condition in enumerate(metadata_filtering_conditions.conditions):  # type: ignore
 | 
						|
                    metadata_name = condition.name
 | 
						|
                    expected_value = condition.value
 | 
						|
                    if expected_value is not None and condition.comparison_operator not in ("empty", "not empty"):
 | 
						|
                        if isinstance(expected_value, str):
 | 
						|
                            expected_value = self._replace_metadata_filter_value(expected_value, inputs)
 | 
						|
                    conditions.append(
 | 
						|
                        Condition(
 | 
						|
                            name=metadata_name,
 | 
						|
                            comparison_operator=condition.comparison_operator,
 | 
						|
                            value=expected_value,
 | 
						|
                        )
 | 
						|
                    )
 | 
						|
                    filters = self._process_metadata_filter_func(
 | 
						|
                        sequence,
 | 
						|
                        condition.comparison_operator,
 | 
						|
                        metadata_name,
 | 
						|
                        expected_value,
 | 
						|
                        filters,
 | 
						|
                    )
 | 
						|
                metadata_condition = MetadataCondition(
 | 
						|
                    logical_operator=metadata_filtering_conditions.logical_operator,
 | 
						|
                    conditions=conditions,
 | 
						|
                )
 | 
						|
        else:
 | 
						|
            raise ValueError("Invalid metadata filtering mode")
 | 
						|
        if filters:
 | 
						|
            if metadata_filtering_conditions and metadata_filtering_conditions.logical_operator == "and":  # type: ignore
 | 
						|
                document_query = document_query.filter(and_(*filters))
 | 
						|
            else:
 | 
						|
                document_query = document_query.filter(or_(*filters))
 | 
						|
        documents = document_query.all()
 | 
						|
        # group by dataset_id
 | 
						|
        metadata_filter_document_ids = defaultdict(list) if documents else None  # type: ignore
 | 
						|
        for document in documents:
 | 
						|
            metadata_filter_document_ids[document.dataset_id].append(document.id)  # type: ignore
 | 
						|
        return metadata_filter_document_ids, metadata_condition
 | 
						|
 | 
						|
    def _replace_metadata_filter_value(self, text: str, inputs: dict) -> str:
 | 
						|
        def replacer(match):
 | 
						|
            key = match.group(1)
 | 
						|
            return str(inputs.get(key, f"{{{{{key}}}}}"))
 | 
						|
 | 
						|
        pattern = re.compile(r"\{\{(\w+)\}\}")
 | 
						|
        output = pattern.sub(replacer, text)
 | 
						|
        if isinstance(output, str):
 | 
						|
            output = re.sub(r"[\r\n\t]+", " ", output).strip()
 | 
						|
        return output
 | 
						|
 | 
						|
    def _automatic_metadata_filter_func(
 | 
						|
        self, dataset_ids: list, query: str, tenant_id: str, user_id: str, metadata_model_config: ModelConfig
 | 
						|
    ) -> Optional[list[dict[str, Any]]]:
 | 
						|
        # get all metadata field
 | 
						|
        metadata_fields = db.session.query(DatasetMetadata).filter(DatasetMetadata.dataset_id.in_(dataset_ids)).all()
 | 
						|
        all_metadata_fields = [metadata_field.name for metadata_field in metadata_fields]
 | 
						|
        # get metadata model config
 | 
						|
        if metadata_model_config is None:
 | 
						|
            raise ValueError("metadata_model_config is required")
 | 
						|
        # get metadata model instance
 | 
						|
        # fetch model config
 | 
						|
        model_instance, model_config = self._fetch_model_config(tenant_id, metadata_model_config)
 | 
						|
 | 
						|
        # fetch prompt messages
 | 
						|
        prompt_messages, stop = self._get_prompt_template(
 | 
						|
            model_config=model_config,
 | 
						|
            mode=metadata_model_config.mode,
 | 
						|
            metadata_fields=all_metadata_fields,
 | 
						|
            query=query or "",
 | 
						|
        )
 | 
						|
 | 
						|
        result_text = ""
 | 
						|
        try:
 | 
						|
            # handle invoke result
 | 
						|
            invoke_result = cast(
 | 
						|
                Generator[LLMResult, None, None],
 | 
						|
                model_instance.invoke_llm(
 | 
						|
                    prompt_messages=prompt_messages,
 | 
						|
                    model_parameters=model_config.parameters,
 | 
						|
                    stop=stop,
 | 
						|
                    stream=True,
 | 
						|
                    user=user_id,
 | 
						|
                ),
 | 
						|
            )
 | 
						|
 | 
						|
            # handle invoke result
 | 
						|
            result_text, usage = self._handle_invoke_result(invoke_result=invoke_result)
 | 
						|
 | 
						|
            result_text_json = parse_and_check_json_markdown(result_text, [])
 | 
						|
            automatic_metadata_filters = []
 | 
						|
            if "metadata_map" in result_text_json:
 | 
						|
                metadata_map = result_text_json["metadata_map"]
 | 
						|
                for item in metadata_map:
 | 
						|
                    if item.get("metadata_field_name") in all_metadata_fields:
 | 
						|
                        automatic_metadata_filters.append(
 | 
						|
                            {
 | 
						|
                                "metadata_name": item.get("metadata_field_name"),
 | 
						|
                                "value": item.get("metadata_field_value"),
 | 
						|
                                "condition": item.get("comparison_operator"),
 | 
						|
                            }
 | 
						|
                        )
 | 
						|
        except Exception as e:
 | 
						|
            return None
 | 
						|
        return automatic_metadata_filters
 | 
						|
 | 
						|
    def _process_metadata_filter_func(
 | 
						|
        self, sequence: int, condition: str, metadata_name: str, value: Optional[Any], filters: list
 | 
						|
    ):
 | 
						|
        key = f"{metadata_name}_{sequence}"
 | 
						|
        key_value = f"{metadata_name}_{sequence}_value"
 | 
						|
        match condition:
 | 
						|
            case "contains":
 | 
						|
                filters.append(
 | 
						|
                    (text(f"documents.doc_metadata ->> :{key} LIKE :{key_value}")).params(
 | 
						|
                        **{key: metadata_name, key_value: f"%{value}%"}
 | 
						|
                    )
 | 
						|
                )
 | 
						|
            case "not contains":
 | 
						|
                filters.append(
 | 
						|
                    (text(f"documents.doc_metadata ->> :{key} NOT LIKE :{key_value}")).params(
 | 
						|
                        **{key: metadata_name, key_value: f"%{value}%"}
 | 
						|
                    )
 | 
						|
                )
 | 
						|
            case "start with":
 | 
						|
                filters.append(
 | 
						|
                    (text(f"documents.doc_metadata ->> :{key} LIKE :{key_value}")).params(
 | 
						|
                        **{key: metadata_name, key_value: f"{value}%"}
 | 
						|
                    )
 | 
						|
                )
 | 
						|
 | 
						|
            case "end with":
 | 
						|
                filters.append(
 | 
						|
                    (text(f"documents.doc_metadata ->> :{key} LIKE :{key_value}")).params(
 | 
						|
                        **{key: metadata_name, key_value: f"%{value}"}
 | 
						|
                    )
 | 
						|
                )
 | 
						|
            case "is" | "=":
 | 
						|
                if isinstance(value, str):
 | 
						|
                    filters.append(DatasetDocument.doc_metadata[metadata_name] == f'"{value}"')
 | 
						|
                else:
 | 
						|
                    filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Float) == value)
 | 
						|
            case "is not" | "≠":
 | 
						|
                if isinstance(value, str):
 | 
						|
                    filters.append(DatasetDocument.doc_metadata[metadata_name] != f'"{value}"')
 | 
						|
                else:
 | 
						|
                    filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Float) != value)
 | 
						|
            case "empty":
 | 
						|
                filters.append(DatasetDocument.doc_metadata[metadata_name].is_(None))
 | 
						|
            case "not empty":
 | 
						|
                filters.append(DatasetDocument.doc_metadata[metadata_name].isnot(None))
 | 
						|
            case "before" | "<":
 | 
						|
                filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Float) < value)
 | 
						|
            case "after" | ">":
 | 
						|
                filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Float) > value)
 | 
						|
            case "≤" | "<=":
 | 
						|
                filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Float) <= value)
 | 
						|
            case "≥" | ">=":
 | 
						|
                filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Float) >= value)
 | 
						|
            case _:
 | 
						|
                pass
 | 
						|
        return filters
 | 
						|
 | 
						|
    def _fetch_model_config(
 | 
						|
        self, tenant_id: str, model: ModelConfig
 | 
						|
    ) -> tuple[ModelInstance, ModelConfigWithCredentialsEntity]:
 | 
						|
        """
 | 
						|
        Fetch model config
 | 
						|
        """
 | 
						|
        if model is None:
 | 
						|
            raise ValueError("single_retrieval_config is required")
 | 
						|
        model_name = model.name
 | 
						|
        provider_name = model.provider
 | 
						|
 | 
						|
        model_manager = ModelManager()
 | 
						|
        model_instance = model_manager.get_model_instance(
 | 
						|
            tenant_id=tenant_id, model_type=ModelType.LLM, provider=provider_name, model=model_name
 | 
						|
        )
 | 
						|
 | 
						|
        provider_model_bundle = model_instance.provider_model_bundle
 | 
						|
        model_type_instance = model_instance.model_type_instance
 | 
						|
        model_type_instance = cast(LargeLanguageModel, model_type_instance)
 | 
						|
 | 
						|
        model_credentials = model_instance.credentials
 | 
						|
 | 
						|
        # check model
 | 
						|
        provider_model = provider_model_bundle.configuration.get_provider_model(
 | 
						|
            model=model_name, model_type=ModelType.LLM
 | 
						|
        )
 | 
						|
 | 
						|
        if provider_model is None:
 | 
						|
            raise ValueError(f"Model {model_name} not exist.")
 | 
						|
 | 
						|
        if provider_model.status == ModelStatus.NO_CONFIGURE:
 | 
						|
            raise ValueError(f"Model {model_name} credentials is not initialized.")
 | 
						|
        elif provider_model.status == ModelStatus.NO_PERMISSION:
 | 
						|
            raise ValueError(f"Dify Hosted OpenAI {model_name} currently not support.")
 | 
						|
        elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
 | 
						|
            raise ValueError(f"Model provider {provider_name} quota exceeded.")
 | 
						|
 | 
						|
        # model config
 | 
						|
        completion_params = model.completion_params
 | 
						|
        stop = []
 | 
						|
        if "stop" in completion_params:
 | 
						|
            stop = completion_params["stop"]
 | 
						|
            del completion_params["stop"]
 | 
						|
 | 
						|
        # get model mode
 | 
						|
        model_mode = model.mode
 | 
						|
        if not model_mode:
 | 
						|
            raise ValueError("LLM mode is required.")
 | 
						|
 | 
						|
        model_schema = model_type_instance.get_model_schema(model_name, model_credentials)
 | 
						|
 | 
						|
        if not model_schema:
 | 
						|
            raise ValueError(f"Model {model_name} not exist.")
 | 
						|
 | 
						|
        return model_instance, ModelConfigWithCredentialsEntity(
 | 
						|
            provider=provider_name,
 | 
						|
            model=model_name,
 | 
						|
            model_schema=model_schema,
 | 
						|
            mode=model_mode,
 | 
						|
            provider_model_bundle=provider_model_bundle,
 | 
						|
            credentials=model_credentials,
 | 
						|
            parameters=completion_params,
 | 
						|
            stop=stop,
 | 
						|
        )
 | 
						|
 | 
						|
    def _get_prompt_template(
 | 
						|
        self, model_config: ModelConfigWithCredentialsEntity, mode: str, metadata_fields: list, query: str
 | 
						|
    ):
 | 
						|
        model_mode = ModelMode.value_of(mode)
 | 
						|
        input_text = query
 | 
						|
 | 
						|
        prompt_template: Union[CompletionModelPromptTemplate, list[ChatModelMessage]]
 | 
						|
        if model_mode == ModelMode.CHAT:
 | 
						|
            prompt_template = []
 | 
						|
            system_prompt_messages = ChatModelMessage(role=PromptMessageRole.SYSTEM, text=METADATA_FILTER_SYSTEM_PROMPT)
 | 
						|
            prompt_template.append(system_prompt_messages)
 | 
						|
            user_prompt_message_1 = ChatModelMessage(role=PromptMessageRole.USER, text=METADATA_FILTER_USER_PROMPT_1)
 | 
						|
            prompt_template.append(user_prompt_message_1)
 | 
						|
            assistant_prompt_message_1 = ChatModelMessage(
 | 
						|
                role=PromptMessageRole.ASSISTANT, text=METADATA_FILTER_ASSISTANT_PROMPT_1
 | 
						|
            )
 | 
						|
            prompt_template.append(assistant_prompt_message_1)
 | 
						|
            user_prompt_message_2 = ChatModelMessage(role=PromptMessageRole.USER, text=METADATA_FILTER_USER_PROMPT_2)
 | 
						|
            prompt_template.append(user_prompt_message_2)
 | 
						|
            assistant_prompt_message_2 = ChatModelMessage(
 | 
						|
                role=PromptMessageRole.ASSISTANT, text=METADATA_FILTER_ASSISTANT_PROMPT_2
 | 
						|
            )
 | 
						|
            prompt_template.append(assistant_prompt_message_2)
 | 
						|
            user_prompt_message_3 = ChatModelMessage(
 | 
						|
                role=PromptMessageRole.USER,
 | 
						|
                text=METADATA_FILTER_USER_PROMPT_3.format(
 | 
						|
                    input_text=input_text,
 | 
						|
                    metadata_fields=json.dumps(metadata_fields, ensure_ascii=False),
 | 
						|
                ),
 | 
						|
            )
 | 
						|
            prompt_template.append(user_prompt_message_3)
 | 
						|
        elif model_mode == ModelMode.COMPLETION:
 | 
						|
            prompt_template = CompletionModelPromptTemplate(
 | 
						|
                text=METADATA_FILTER_COMPLETION_PROMPT.format(
 | 
						|
                    input_text=input_text,
 | 
						|
                    metadata_fields=json.dumps(metadata_fields, ensure_ascii=False),
 | 
						|
                )
 | 
						|
            )
 | 
						|
 | 
						|
        else:
 | 
						|
            raise ValueError(f"Model mode {model_mode} not support.")
 | 
						|
 | 
						|
        prompt_transform = AdvancedPromptTransform()
 | 
						|
        prompt_messages = prompt_transform.get_prompt(
 | 
						|
            prompt_template=prompt_template,
 | 
						|
            inputs={},
 | 
						|
            query=query or "",
 | 
						|
            files=[],
 | 
						|
            context=None,
 | 
						|
            memory_config=None,
 | 
						|
            memory=None,
 | 
						|
            model_config=model_config,
 | 
						|
        )
 | 
						|
        stop = model_config.stop
 | 
						|
 | 
						|
        return prompt_messages, stop
 | 
						|
 | 
						|
    def _handle_invoke_result(self, invoke_result: Generator) -> tuple[str, LLMUsage]:
 | 
						|
        """
 | 
						|
        Handle invoke result
 | 
						|
        :param invoke_result: invoke result
 | 
						|
        :return:
 | 
						|
        """
 | 
						|
        model = None
 | 
						|
        prompt_messages: list[PromptMessage] = []
 | 
						|
        full_text = ""
 | 
						|
        usage = None
 | 
						|
        for result in invoke_result:
 | 
						|
            text = result.delta.message.content
 | 
						|
            full_text += text
 | 
						|
 | 
						|
            if not model:
 | 
						|
                model = result.model
 | 
						|
 | 
						|
            if not prompt_messages:
 | 
						|
                prompt_messages = result.prompt_messages
 | 
						|
 | 
						|
            if not usage and result.delta.usage:
 | 
						|
                usage = result.delta.usage
 | 
						|
 | 
						|
        if not usage:
 | 
						|
            usage = LLMUsage.empty_usage()
 | 
						|
 | 
						|
        return full_text, usage
 |