dify/api/controllers/console/app/generator.py

309 lines
14 KiB
Python

from collections.abc import Sequence
from flask_login import current_user
from flask_restx import Resource, fields, reqparse
from controllers.console import api, console_ns
from controllers.console.app.error import (
CompletionRequestError,
ProviderModelCurrentlyNotSupportError,
ProviderNotInitializeError,
ProviderQuotaExceededError,
)
from controllers.console.wraps import account_initialization_required, setup_required
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.helper.code_executor.javascript.javascript_code_provider import JavascriptCodeProvider
from core.helper.code_executor.python3.python3_code_provider import Python3CodeProvider
from core.llm_generator.llm_generator import LLMGenerator
from core.model_runtime.errors.invoke import InvokeError
from libs.login import login_required
@console_ns.route("/rule-generate")
class RuleGenerateApi(Resource):
@api.doc("generate_rule_config")
@api.doc(description="Generate rule configuration using LLM")
@api.expect(
api.model(
"RuleGenerateRequest",
{
"instruction": fields.String(required=True, description="Rule generation instruction"),
"model_config": fields.Raw(required=True, description="Model configuration"),
"no_variable": fields.Boolean(required=True, default=False, description="Whether to exclude variables"),
},
)
)
@api.response(200, "Rule configuration generated successfully")
@api.response(400, "Invalid request parameters")
@api.response(402, "Provider quota exceeded")
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("instruction", type=str, required=True, nullable=False, location="json")
parser.add_argument("model_config", type=dict, required=True, nullable=False, location="json")
parser.add_argument("no_variable", type=bool, required=True, default=False, location="json")
args = parser.parse_args()
account = current_user
try:
rules = LLMGenerator.generate_rule_config(
tenant_id=account.current_tenant_id,
instruction=args["instruction"],
model_config=args["model_config"],
no_variable=args["no_variable"],
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
return rules
@console_ns.route("/rule-code-generate")
class RuleCodeGenerateApi(Resource):
@api.doc("generate_rule_code")
@api.doc(description="Generate code rules using LLM")
@api.expect(
api.model(
"RuleCodeGenerateRequest",
{
"instruction": fields.String(required=True, description="Code generation instruction"),
"model_config": fields.Raw(required=True, description="Model configuration"),
"no_variable": fields.Boolean(required=True, default=False, description="Whether to exclude variables"),
"code_language": fields.String(
default="javascript", description="Programming language for code generation"
),
},
)
)
@api.response(200, "Code rules generated successfully")
@api.response(400, "Invalid request parameters")
@api.response(402, "Provider quota exceeded")
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("instruction", type=str, required=True, nullable=False, location="json")
parser.add_argument("model_config", type=dict, required=True, nullable=False, location="json")
parser.add_argument("no_variable", type=bool, required=True, default=False, location="json")
parser.add_argument("code_language", type=str, required=False, default="javascript", location="json")
args = parser.parse_args()
account = current_user
try:
code_result = LLMGenerator.generate_code(
tenant_id=account.current_tenant_id,
instruction=args["instruction"],
model_config=args["model_config"],
code_language=args["code_language"],
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
return code_result
@console_ns.route("/rule-structured-output-generate")
class RuleStructuredOutputGenerateApi(Resource):
@api.doc("generate_structured_output")
@api.doc(description="Generate structured output rules using LLM")
@api.expect(
api.model(
"StructuredOutputGenerateRequest",
{
"instruction": fields.String(required=True, description="Structured output generation instruction"),
"model_config": fields.Raw(required=True, description="Model configuration"),
},
)
)
@api.response(200, "Structured output generated successfully")
@api.response(400, "Invalid request parameters")
@api.response(402, "Provider quota exceeded")
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("instruction", type=str, required=True, nullable=False, location="json")
parser.add_argument("model_config", type=dict, required=True, nullable=False, location="json")
args = parser.parse_args()
account = current_user
try:
structured_output = LLMGenerator.generate_structured_output(
tenant_id=account.current_tenant_id,
instruction=args["instruction"],
model_config=args["model_config"],
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
return structured_output
@console_ns.route("/instruction-generate")
class InstructionGenerateApi(Resource):
@api.doc("generate_instruction")
@api.doc(description="Generate instruction for workflow nodes or general use")
@api.expect(
api.model(
"InstructionGenerateRequest",
{
"flow_id": fields.String(required=True, description="Workflow/Flow ID"),
"node_id": fields.String(description="Node ID for workflow context"),
"current": fields.String(description="Current instruction text"),
"language": fields.String(default="javascript", description="Programming language (javascript/python)"),
"instruction": fields.String(required=True, description="Instruction for generation"),
"model_config": fields.Raw(required=True, description="Model configuration"),
"ideal_output": fields.String(description="Expected ideal output"),
},
)
)
@api.response(200, "Instruction generated successfully")
@api.response(400, "Invalid request parameters or flow/workflow not found")
@api.response(402, "Provider quota exceeded")
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("flow_id", type=str, required=True, default="", location="json")
parser.add_argument("node_id", type=str, required=False, default="", location="json")
parser.add_argument("current", type=str, required=False, default="", location="json")
parser.add_argument("language", type=str, required=False, default="javascript", location="json")
parser.add_argument("instruction", type=str, required=True, nullable=False, location="json")
parser.add_argument("model_config", type=dict, required=True, nullable=False, location="json")
parser.add_argument("ideal_output", type=str, required=False, default="", location="json")
args = parser.parse_args()
code_template = (
Python3CodeProvider.get_default_code()
if args["language"] == "python"
else (JavascriptCodeProvider.get_default_code())
if args["language"] == "javascript"
else ""
)
try:
# Generate from nothing for a workflow node
if (args["current"] == code_template or args["current"] == "") and args["node_id"] != "":
from models import App, db
from services.workflow_service import WorkflowService
app = db.session.query(App).where(App.id == args["flow_id"]).first()
if not app:
return {"error": f"app {args['flow_id']} not found"}, 400
workflow = WorkflowService().get_draft_workflow(app_model=app)
if not workflow:
return {"error": f"workflow {args['flow_id']} not found"}, 400
nodes: Sequence = workflow.graph_dict["nodes"]
node = [node for node in nodes if node["id"] == args["node_id"]]
if len(node) == 0:
return {"error": f"node {args['node_id']} not found"}, 400
node_type = node[0]["data"]["type"]
match node_type:
case "llm":
return LLMGenerator.generate_rule_config(
current_user.current_tenant_id,
instruction=args["instruction"],
model_config=args["model_config"],
no_variable=True,
)
case "agent":
return LLMGenerator.generate_rule_config(
current_user.current_tenant_id,
instruction=args["instruction"],
model_config=args["model_config"],
no_variable=True,
)
case "code":
return LLMGenerator.generate_code(
tenant_id=current_user.current_tenant_id,
instruction=args["instruction"],
model_config=args["model_config"],
code_language=args["language"],
)
case _:
return {"error": f"invalid node type: {node_type}"}
if args["node_id"] == "" and args["current"] != "": # For legacy app without a workflow
return LLMGenerator.instruction_modify_legacy(
tenant_id=current_user.current_tenant_id,
flow_id=args["flow_id"],
current=args["current"],
instruction=args["instruction"],
model_config=args["model_config"],
ideal_output=args["ideal_output"],
)
if args["node_id"] != "" and args["current"] != "": # For workflow node
return LLMGenerator.instruction_modify_workflow(
tenant_id=current_user.current_tenant_id,
flow_id=args["flow_id"],
node_id=args["node_id"],
current=args["current"],
instruction=args["instruction"],
model_config=args["model_config"],
ideal_output=args["ideal_output"],
)
return {"error": "incompatible parameters"}, 400
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
@console_ns.route("/instruction-generate/template")
class InstructionGenerationTemplateApi(Resource):
@api.doc("get_instruction_template")
@api.doc(description="Get instruction generation template")
@api.expect(
api.model(
"InstructionTemplateRequest",
{
"instruction": fields.String(required=True, description="Template instruction"),
"ideal_output": fields.String(description="Expected ideal output"),
},
)
)
@api.response(200, "Template retrieved successfully")
@api.response(400, "Invalid request parameters")
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("type", type=str, required=True, default=False, location="json")
args = parser.parse_args()
match args["type"]:
case "prompt":
from core.llm_generator.prompts import INSTRUCTION_GENERATE_TEMPLATE_PROMPT
return {"data": INSTRUCTION_GENERATE_TEMPLATE_PROMPT}
case "code":
from core.llm_generator.prompts import INSTRUCTION_GENERATE_TEMPLATE_CODE
return {"data": INSTRUCTION_GENERATE_TEMPLATE_CODE}
case _:
raise ValueError(f"Invalid type: {args['type']}")