mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-31 10:53:02 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			546 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			546 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import json
 | |
| import logging
 | |
| import uuid
 | |
| from datetime import datetime, timezone
 | |
| from typing import Optional, Union, cast
 | |
| 
 | |
| from core.agent.entities import AgentEntity, AgentToolEntity
 | |
| from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
 | |
| from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
 | |
| from core.app.apps.base_app_queue_manager import AppQueueManager
 | |
| from core.app.apps.base_app_runner import AppRunner
 | |
| from core.app.entities.app_invoke_entities import (
 | |
|     AgentChatAppGenerateEntity,
 | |
|     ModelConfigWithCredentialsEntity,
 | |
| )
 | |
| from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
 | |
| from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
 | |
| from core.file.message_file_parser import MessageFileParser
 | |
| from core.memory.token_buffer_memory import TokenBufferMemory
 | |
| from core.model_manager import ModelInstance
 | |
| from core.model_runtime.entities.llm_entities import LLMUsage
 | |
| from core.model_runtime.entities.message_entities import (
 | |
|     AssistantPromptMessage,
 | |
|     PromptMessage,
 | |
|     PromptMessageTool,
 | |
|     SystemPromptMessage,
 | |
|     TextPromptMessageContent,
 | |
|     ToolPromptMessage,
 | |
|     UserPromptMessage,
 | |
| )
 | |
| from core.model_runtime.entities.model_entities import ModelFeature
 | |
| from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
 | |
| from core.model_runtime.utils.encoders import jsonable_encoder
 | |
| from core.tools.entities.tool_entities import (
 | |
|     ToolInvokeMessage,
 | |
|     ToolParameter,
 | |
|     ToolRuntimeVariablePool,
 | |
| )
 | |
| from core.tools.tool.dataset_retriever_tool import DatasetRetrieverTool
 | |
| from core.tools.tool.tool import Tool
 | |
| from core.tools.tool_manager import ToolManager
 | |
| from extensions.ext_database import db
 | |
| from models.model import Conversation, Message, MessageAgentThought
 | |
| from models.tools import ToolConversationVariables
 | |
| 
 | |
| logger = logging.getLogger(__name__)
 | |
| 
 | |
| class BaseAgentRunner(AppRunner):
 | |
|     def __init__(self, tenant_id: str,
 | |
|                  application_generate_entity: AgentChatAppGenerateEntity,
 | |
|                  conversation: Conversation,
 | |
|                  app_config: AgentChatAppConfig,
 | |
|                  model_config: ModelConfigWithCredentialsEntity,
 | |
|                  config: AgentEntity,
 | |
|                  queue_manager: AppQueueManager,
 | |
|                  message: Message,
 | |
|                  user_id: str,
 | |
|                  memory: Optional[TokenBufferMemory] = None,
 | |
|                  prompt_messages: Optional[list[PromptMessage]] = None,
 | |
|                  variables_pool: Optional[ToolRuntimeVariablePool] = None,
 | |
|                  db_variables: Optional[ToolConversationVariables] = None,
 | |
|                  model_instance: ModelInstance = None
 | |
|                  ) -> None:
 | |
|         """
 | |
|         Agent runner
 | |
|         :param tenant_id: tenant id
 | |
|         :param app_config: app generate entity
 | |
|         :param model_config: model config
 | |
|         :param config: dataset config
 | |
|         :param queue_manager: queue manager
 | |
|         :param message: message
 | |
|         :param user_id: user id
 | |
|         :param agent_llm_callback: agent llm callback
 | |
|         :param callback: callback
 | |
|         :param memory: memory
 | |
|         """
 | |
|         self.tenant_id = tenant_id
 | |
|         self.application_generate_entity = application_generate_entity
 | |
|         self.conversation = conversation
 | |
|         self.app_config = app_config
 | |
|         self.model_config = model_config
 | |
|         self.config = config
 | |
|         self.queue_manager = queue_manager
 | |
|         self.message = message
 | |
|         self.user_id = user_id
 | |
|         self.memory = memory
 | |
|         self.history_prompt_messages = self.organize_agent_history(
 | |
|             prompt_messages=prompt_messages or []
 | |
|         )
 | |
|         self.variables_pool = variables_pool
 | |
|         self.db_variables_pool = db_variables
 | |
|         self.model_instance = model_instance
 | |
| 
 | |
|         # init callback
 | |
|         self.agent_callback = DifyAgentCallbackHandler()
 | |
|         # init dataset tools
 | |
|         hit_callback = DatasetIndexToolCallbackHandler(
 | |
|             queue_manager=queue_manager,
 | |
|             app_id=self.app_config.app_id,
 | |
|             message_id=message.id,
 | |
|             user_id=user_id,
 | |
|             invoke_from=self.application_generate_entity.invoke_from,
 | |
|         )
 | |
|         self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
 | |
|             tenant_id=tenant_id,
 | |
|             dataset_ids=app_config.dataset.dataset_ids if app_config.dataset else [],
 | |
|             retrieve_config=app_config.dataset.retrieve_config if app_config.dataset else None,
 | |
|             return_resource=app_config.additional_features.show_retrieve_source,
 | |
|             invoke_from=application_generate_entity.invoke_from,
 | |
|             hit_callback=hit_callback
 | |
|         )
 | |
|         # get how many agent thoughts have been created
 | |
|         self.agent_thought_count = db.session.query(MessageAgentThought).filter(
 | |
|             MessageAgentThought.message_id == self.message.id,
 | |
|         ).count()
 | |
|         db.session.close()
 | |
| 
 | |
|         # check if model supports stream tool call
 | |
|         llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
 | |
|         model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
 | |
|         if model_schema and ModelFeature.STREAM_TOOL_CALL in (model_schema.features or []):
 | |
|             self.stream_tool_call = True
 | |
|         else:
 | |
|             self.stream_tool_call = False
 | |
| 
 | |
|         # check if model supports vision
 | |
|         if model_schema and ModelFeature.VISION in (model_schema.features or []):
 | |
|             self.files = application_generate_entity.files
 | |
|         else:
 | |
|             self.files = []
 | |
| 
 | |
|     def _repack_app_generate_entity(self, app_generate_entity: AgentChatAppGenerateEntity) \
 | |
|             -> AgentChatAppGenerateEntity:
 | |
|         """
 | |
|         Repack app generate entity
 | |
|         """
 | |
|         if app_generate_entity.app_config.prompt_template.simple_prompt_template is None:
 | |
|             app_generate_entity.app_config.prompt_template.simple_prompt_template = ''
 | |
| 
 | |
|         return app_generate_entity
 | |
| 
 | |
|     def _convert_tool_response_to_str(self, tool_response: list[ToolInvokeMessage]) -> str:
 | |
|         """
 | |
|         Handle tool response
 | |
|         """
 | |
|         result = ''
 | |
|         for response in tool_response:
 | |
|             if response.type == ToolInvokeMessage.MessageType.TEXT:
 | |
|                 result += response.message
 | |
|             elif response.type == ToolInvokeMessage.MessageType.LINK:
 | |
|                 result += f"result link: {response.message}. please tell user to check it."
 | |
|             elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
 | |
|                  response.type == ToolInvokeMessage.MessageType.IMAGE:
 | |
|                 result += "image has been created and sent to user already, you do not need to create it, just tell the user to check it now."
 | |
|             else:
 | |
|                 result += f"tool response: {response.message}."
 | |
| 
 | |
|         return result
 | |
|     
 | |
|     def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> tuple[PromptMessageTool, Tool]:
 | |
|         """
 | |
|             convert tool to prompt message tool
 | |
|         """
 | |
|         tool_entity = ToolManager.get_agent_tool_runtime(
 | |
|             tenant_id=self.tenant_id,
 | |
|             agent_tool=tool,
 | |
|         )
 | |
|         tool_entity.load_variables(self.variables_pool)
 | |
| 
 | |
|         message_tool = PromptMessageTool(
 | |
|             name=tool.tool_name,
 | |
|             description=tool_entity.description.llm,
 | |
|             parameters={
 | |
|                 "type": "object",
 | |
|                 "properties": {},
 | |
|                 "required": [],
 | |
|             }
 | |
|         )
 | |
| 
 | |
|         parameters = tool_entity.get_all_runtime_parameters()
 | |
|         for parameter in parameters:
 | |
|             if parameter.form != ToolParameter.ToolParameterForm.LLM:
 | |
|                 continue
 | |
| 
 | |
|             parameter_type = 'string'
 | |
|             enum = []
 | |
|             if parameter.type == ToolParameter.ToolParameterType.STRING:
 | |
|                 parameter_type = 'string'
 | |
|             elif parameter.type == ToolParameter.ToolParameterType.BOOLEAN:
 | |
|                 parameter_type = 'boolean'
 | |
|             elif parameter.type == ToolParameter.ToolParameterType.NUMBER:
 | |
|                 parameter_type = 'number'
 | |
|             elif parameter.type == ToolParameter.ToolParameterType.SELECT:
 | |
|                 for option in parameter.options:
 | |
|                     enum.append(option.value)
 | |
|                 parameter_type = 'string'
 | |
|             else:
 | |
|                 raise ValueError(f"parameter type {parameter.type} is not supported")
 | |
|             
 | |
|             message_tool.parameters['properties'][parameter.name] = {
 | |
|                 "type": parameter_type,
 | |
|                 "description": parameter.llm_description or '',
 | |
|             }
 | |
| 
 | |
|             if len(enum) > 0:
 | |
|                 message_tool.parameters['properties'][parameter.name]['enum'] = enum
 | |
| 
 | |
|             if parameter.required:
 | |
|                 message_tool.parameters['required'].append(parameter.name)
 | |
| 
 | |
|         return message_tool, tool_entity
 | |
|     
 | |
|     def _convert_dataset_retriever_tool_to_prompt_message_tool(self, tool: DatasetRetrieverTool) -> PromptMessageTool:
 | |
|         """
 | |
|         convert dataset retriever tool to prompt message tool
 | |
|         """
 | |
|         prompt_tool = PromptMessageTool(
 | |
|             name=tool.identity.name,
 | |
|             description=tool.description.llm,
 | |
|             parameters={
 | |
|                 "type": "object",
 | |
|                 "properties": {},
 | |
|                 "required": [],
 | |
|             }
 | |
|         )
 | |
| 
 | |
|         for parameter in tool.get_runtime_parameters():
 | |
|             parameter_type = 'string'
 | |
|         
 | |
|             prompt_tool.parameters['properties'][parameter.name] = {
 | |
|                 "type": parameter_type,
 | |
|                 "description": parameter.llm_description or '',
 | |
|             }
 | |
| 
 | |
|             if parameter.required:
 | |
|                 if parameter.name not in prompt_tool.parameters['required']:
 | |
|                     prompt_tool.parameters['required'].append(parameter.name)
 | |
| 
 | |
|         return prompt_tool
 | |
|     
 | |
|     def _init_prompt_tools(self) -> tuple[dict[str, Tool], list[PromptMessageTool]]:
 | |
|         """
 | |
|         Init tools
 | |
|         """
 | |
|         tool_instances = {}
 | |
|         prompt_messages_tools = []
 | |
| 
 | |
|         for tool in self.app_config.agent.tools if self.app_config.agent else []:
 | |
|             try:
 | |
|                 prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
 | |
|             except Exception:
 | |
|                 # api tool may be deleted
 | |
|                 continue
 | |
|             # save tool entity
 | |
|             tool_instances[tool.tool_name] = tool_entity
 | |
|             # save prompt tool
 | |
|             prompt_messages_tools.append(prompt_tool)
 | |
| 
 | |
|         # convert dataset tools into ModelRuntime Tool format
 | |
|         for dataset_tool in self.dataset_tools:
 | |
|             prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
 | |
|             # save prompt tool
 | |
|             prompt_messages_tools.append(prompt_tool)
 | |
|             # save tool entity
 | |
|             tool_instances[dataset_tool.identity.name] = dataset_tool
 | |
| 
 | |
|         return tool_instances, prompt_messages_tools
 | |
| 
 | |
|     def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
 | |
|         """
 | |
|         update prompt message tool
 | |
|         """
 | |
|         # try to get tool runtime parameters
 | |
|         tool_runtime_parameters = tool.get_runtime_parameters() or []
 | |
| 
 | |
|         for parameter in tool_runtime_parameters:
 | |
|             if parameter.form != ToolParameter.ToolParameterForm.LLM:
 | |
|                 continue
 | |
| 
 | |
|             parameter_type = 'string'
 | |
|             enum = []
 | |
|             if parameter.type == ToolParameter.ToolParameterType.STRING:
 | |
|                 parameter_type = 'string'
 | |
|             elif parameter.type == ToolParameter.ToolParameterType.BOOLEAN:
 | |
|                 parameter_type = 'boolean'
 | |
|             elif parameter.type == ToolParameter.ToolParameterType.NUMBER:
 | |
|                 parameter_type = 'number'
 | |
|             elif parameter.type == ToolParameter.ToolParameterType.SELECT:
 | |
|                 for option in parameter.options:
 | |
|                     enum.append(option.value)
 | |
|                 parameter_type = 'string'
 | |
|             else:
 | |
|                 raise ValueError(f"parameter type {parameter.type} is not supported")
 | |
|         
 | |
|             prompt_tool.parameters['properties'][parameter.name] = {
 | |
|                 "type": parameter_type,
 | |
|                 "description": parameter.llm_description or '',
 | |
|             }
 | |
| 
 | |
|             if len(enum) > 0:
 | |
|                 prompt_tool.parameters['properties'][parameter.name]['enum'] = enum
 | |
| 
 | |
|             if parameter.required:
 | |
|                 if parameter.name not in prompt_tool.parameters['required']:
 | |
|                     prompt_tool.parameters['required'].append(parameter.name)
 | |
| 
 | |
|         return prompt_tool
 | |
|         
 | |
|     def create_agent_thought(self, message_id: str, message: str, 
 | |
|                              tool_name: str, tool_input: str, messages_ids: list[str]
 | |
|                              ) -> MessageAgentThought:
 | |
|         """
 | |
|         Create agent thought
 | |
|         """
 | |
|         thought = MessageAgentThought(
 | |
|             message_id=message_id,
 | |
|             message_chain_id=None,
 | |
|             thought='',
 | |
|             tool=tool_name,
 | |
|             tool_labels_str='{}',
 | |
|             tool_meta_str='{}',
 | |
|             tool_input=tool_input,
 | |
|             message=message,
 | |
|             message_token=0,
 | |
|             message_unit_price=0,
 | |
|             message_price_unit=0,
 | |
|             message_files=json.dumps(messages_ids) if messages_ids else '',
 | |
|             answer='',
 | |
|             observation='',
 | |
|             answer_token=0,
 | |
|             answer_unit_price=0,
 | |
|             answer_price_unit=0,
 | |
|             tokens=0,
 | |
|             total_price=0,
 | |
|             position=self.agent_thought_count + 1,
 | |
|             currency='USD',
 | |
|             latency=0,
 | |
|             created_by_role='account',
 | |
|             created_by=self.user_id,
 | |
|         )
 | |
| 
 | |
|         db.session.add(thought)
 | |
|         db.session.commit()
 | |
|         db.session.refresh(thought)
 | |
|         db.session.close()
 | |
| 
 | |
|         self.agent_thought_count += 1
 | |
| 
 | |
|         return thought
 | |
| 
 | |
|     def save_agent_thought(self, 
 | |
|                            agent_thought: MessageAgentThought, 
 | |
|                            tool_name: str,
 | |
|                            tool_input: Union[str, dict],
 | |
|                            thought: str, 
 | |
|                            observation: Union[str, dict], 
 | |
|                            tool_invoke_meta: Union[str, dict],
 | |
|                            answer: str,
 | |
|                            messages_ids: list[str],
 | |
|                            llm_usage: LLMUsage = None) -> MessageAgentThought:
 | |
|         """
 | |
|         Save agent thought
 | |
|         """
 | |
|         agent_thought = db.session.query(MessageAgentThought).filter(
 | |
|             MessageAgentThought.id == agent_thought.id
 | |
|         ).first()
 | |
| 
 | |
|         if thought is not None:
 | |
|             agent_thought.thought = thought
 | |
| 
 | |
|         if tool_name is not None:
 | |
|             agent_thought.tool = tool_name
 | |
| 
 | |
|         if tool_input is not None:
 | |
|             if isinstance(tool_input, dict):
 | |
|                 try:
 | |
|                     tool_input = json.dumps(tool_input, ensure_ascii=False)
 | |
|                 except Exception as e:
 | |
|                     tool_input = json.dumps(tool_input)
 | |
| 
 | |
|             agent_thought.tool_input = tool_input
 | |
| 
 | |
|         if observation is not None:
 | |
|             if isinstance(observation, dict):
 | |
|                 try:
 | |
|                     observation = json.dumps(observation, ensure_ascii=False)
 | |
|                 except Exception as e:
 | |
|                     observation = json.dumps(observation)
 | |
|                     
 | |
|             agent_thought.observation = observation
 | |
| 
 | |
|         if answer is not None:
 | |
|             agent_thought.answer = answer
 | |
| 
 | |
|         if messages_ids is not None and len(messages_ids) > 0:
 | |
|             agent_thought.message_files = json.dumps(messages_ids)
 | |
|         
 | |
|         if llm_usage:
 | |
|             agent_thought.message_token = llm_usage.prompt_tokens
 | |
|             agent_thought.message_price_unit = llm_usage.prompt_price_unit
 | |
|             agent_thought.message_unit_price = llm_usage.prompt_unit_price
 | |
|             agent_thought.answer_token = llm_usage.completion_tokens
 | |
|             agent_thought.answer_price_unit = llm_usage.completion_price_unit
 | |
|             agent_thought.answer_unit_price = llm_usage.completion_unit_price
 | |
|             agent_thought.tokens = llm_usage.total_tokens
 | |
|             agent_thought.total_price = llm_usage.total_price
 | |
| 
 | |
|         # check if tool labels is not empty
 | |
|         labels = agent_thought.tool_labels or {}
 | |
|         tools = agent_thought.tool.split(';') if agent_thought.tool else []
 | |
|         for tool in tools:
 | |
|             if not tool:
 | |
|                 continue
 | |
|             if tool not in labels:
 | |
|                 tool_label = ToolManager.get_tool_label(tool)
 | |
|                 if tool_label:
 | |
|                     labels[tool] = tool_label.to_dict()
 | |
|                 else:
 | |
|                     labels[tool] = {'en_US': tool, 'zh_Hans': tool}
 | |
| 
 | |
|         agent_thought.tool_labels_str = json.dumps(labels)
 | |
| 
 | |
|         if tool_invoke_meta is not None:
 | |
|             if isinstance(tool_invoke_meta, dict):
 | |
|                 try:
 | |
|                     tool_invoke_meta = json.dumps(tool_invoke_meta, ensure_ascii=False)
 | |
|                 except Exception as e:
 | |
|                     tool_invoke_meta = json.dumps(tool_invoke_meta)
 | |
| 
 | |
|             agent_thought.tool_meta_str = tool_invoke_meta
 | |
| 
 | |
|         db.session.commit()
 | |
|         db.session.close()
 | |
|     
 | |
|     def update_db_variables(self, tool_variables: ToolRuntimeVariablePool, db_variables: ToolConversationVariables):
 | |
|         """
 | |
|         convert tool variables to db variables
 | |
|         """
 | |
|         db_variables = db.session.query(ToolConversationVariables).filter(
 | |
|             ToolConversationVariables.conversation_id == self.message.conversation_id,
 | |
|         ).first()
 | |
| 
 | |
|         db_variables.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
 | |
|         db_variables.variables_str = json.dumps(jsonable_encoder(tool_variables.pool))
 | |
|         db.session.commit()
 | |
|         db.session.close()
 | |
| 
 | |
|     def organize_agent_history(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
 | |
|         """
 | |
|         Organize agent history
 | |
|         """
 | |
|         result = []
 | |
|         # check if there is a system message in the beginning of the conversation
 | |
|         for prompt_message in prompt_messages:
 | |
|             if isinstance(prompt_message, SystemPromptMessage):
 | |
|                 result.append(prompt_message)
 | |
| 
 | |
|         messages: list[Message] = db.session.query(Message).filter(
 | |
|             Message.conversation_id == self.message.conversation_id,
 | |
|         ).order_by(Message.created_at.asc()).all()
 | |
| 
 | |
|         for message in messages:
 | |
|             if message.id == self.message.id:
 | |
|                 continue
 | |
|             
 | |
|             result.append(self.organize_agent_user_prompt(message))
 | |
|             agent_thoughts: list[MessageAgentThought] = message.agent_thoughts
 | |
|             if agent_thoughts:
 | |
|                 for agent_thought in agent_thoughts:
 | |
|                     tools = agent_thought.tool
 | |
|                     if tools:
 | |
|                         tools = tools.split(';')
 | |
|                         tool_calls: list[AssistantPromptMessage.ToolCall] = []
 | |
|                         tool_call_response: list[ToolPromptMessage] = []
 | |
|                         try:
 | |
|                             tool_inputs = json.loads(agent_thought.tool_input)
 | |
|                         except Exception as e:
 | |
|                             tool_inputs = { tool: {} for tool in tools }
 | |
|                         try:
 | |
|                             tool_responses = json.loads(agent_thought.observation)
 | |
|                         except Exception as e:
 | |
|                             tool_responses = { tool: agent_thought.observation for tool in tools }
 | |
| 
 | |
|                         for tool in tools:
 | |
|                             # generate a uuid for tool call
 | |
|                             tool_call_id = str(uuid.uuid4())
 | |
|                             tool_calls.append(AssistantPromptMessage.ToolCall(
 | |
|                                 id=tool_call_id,
 | |
|                                 type='function',
 | |
|                                 function=AssistantPromptMessage.ToolCall.ToolCallFunction(
 | |
|                                     name=tool,
 | |
|                                     arguments=json.dumps(tool_inputs.get(tool, {})),
 | |
|                                 )
 | |
|                             ))
 | |
|                             tool_call_response.append(ToolPromptMessage(
 | |
|                                 content=tool_responses.get(tool, agent_thought.observation),
 | |
|                                 name=tool,
 | |
|                                 tool_call_id=tool_call_id,
 | |
|                             ))
 | |
| 
 | |
|                         result.extend([
 | |
|                             AssistantPromptMessage(
 | |
|                                 content=agent_thought.thought,
 | |
|                                 tool_calls=tool_calls,
 | |
|                             ),
 | |
|                             *tool_call_response
 | |
|                         ])
 | |
|                     if not tools:
 | |
|                         result.append(AssistantPromptMessage(content=agent_thought.thought))
 | |
|             else:
 | |
|                 if message.answer:
 | |
|                     result.append(AssistantPromptMessage(content=message.answer))
 | |
| 
 | |
|         db.session.close()
 | |
| 
 | |
|         return result
 | |
| 
 | |
|     def organize_agent_user_prompt(self, message: Message) -> UserPromptMessage:
 | |
|         message_file_parser = MessageFileParser(
 | |
|             tenant_id=self.tenant_id,
 | |
|             app_id=self.app_config.app_id,
 | |
|         )
 | |
| 
 | |
|         files = message.message_files
 | |
|         if files:
 | |
|             file_extra_config = FileUploadConfigManager.convert(message.app_model_config.to_dict())
 | |
| 
 | |
|             if file_extra_config:
 | |
|                 file_objs = message_file_parser.transform_message_files(
 | |
|                     files,
 | |
|                     file_extra_config
 | |
|                 )
 | |
|             else:
 | |
|                 file_objs = []
 | |
| 
 | |
|             if not file_objs:
 | |
|                 return UserPromptMessage(content=message.query)
 | |
|             else:
 | |
|                 prompt_message_contents = [TextPromptMessageContent(data=message.query)]
 | |
|                 for file_obj in file_objs:
 | |
|                     prompt_message_contents.append(file_obj.prompt_message_content)
 | |
| 
 | |
|                 return UserPromptMessage(content=prompt_message_contents)
 | |
|         else:
 | |
|             return UserPromptMessage(content=message.query)
 | 
