mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-29 18:03:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			73 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			73 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import logging
 | |
| import time
 | |
| 
 | |
| import click
 | |
| from celery import shared_task
 | |
| 
 | |
| from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
 | |
| from core.rag.models.document import Document
 | |
| from extensions.ext_database import db
 | |
| from models.dataset import Dataset, DocumentSegment
 | |
| from models.dataset import Document as DatasetDocument
 | |
| 
 | |
| 
 | |
| @shared_task(queue='dataset')
 | |
| def deal_dataset_vector_index_task(dataset_id: str, action: str):
 | |
|     """
 | |
|     Async deal dataset from index
 | |
|     :param dataset_id: dataset_id
 | |
|     :param action: action
 | |
|     Usage: deal_dataset_vector_index_task.delay(dataset_id, action)
 | |
|     """
 | |
|     logging.info(click.style('Start deal dataset vector index: {}'.format(dataset_id), fg='green'))
 | |
|     start_at = time.perf_counter()
 | |
| 
 | |
|     try:
 | |
|         dataset = Dataset.query.filter_by(
 | |
|             id=dataset_id
 | |
|         ).first()
 | |
| 
 | |
|         if not dataset:
 | |
|             raise Exception('Dataset not found')
 | |
|         index_type = dataset.doc_form
 | |
|         index_processor = IndexProcessorFactory(index_type).init_index_processor()
 | |
|         if action == "remove":
 | |
|             index_processor.clean(dataset, None, with_keywords=False)
 | |
|         elif action == "add":
 | |
|             dataset_documents = db.session.query(DatasetDocument).filter(
 | |
|                 DatasetDocument.dataset_id == dataset_id,
 | |
|                 DatasetDocument.indexing_status == 'completed',
 | |
|                 DatasetDocument.enabled == True,
 | |
|                 DatasetDocument.archived == False,
 | |
|             ).all()
 | |
| 
 | |
|             if dataset_documents:
 | |
|                 documents = []
 | |
|                 for dataset_document in dataset_documents:
 | |
|                     # delete from vector index
 | |
|                     segments = db.session.query(DocumentSegment).filter(
 | |
|                         DocumentSegment.document_id == dataset_document.id,
 | |
|                         DocumentSegment.enabled == True
 | |
|                     ) .order_by(DocumentSegment.position.asc()).all()
 | |
|                     for segment in segments:
 | |
|                         document = Document(
 | |
|                             page_content=segment.content,
 | |
|                             metadata={
 | |
|                                 "doc_id": segment.index_node_id,
 | |
|                                 "doc_hash": segment.index_node_hash,
 | |
|                                 "document_id": segment.document_id,
 | |
|                                 "dataset_id": segment.dataset_id,
 | |
|                             }
 | |
|                         )
 | |
| 
 | |
|                         documents.append(document)
 | |
| 
 | |
|                 # save vector index
 | |
|                 index_processor.load(dataset, documents, with_keywords=False)
 | |
| 
 | |
|         end_at = time.perf_counter()
 | |
|         logging.info(
 | |
|             click.style('Deal dataset vector index: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
 | |
|     except Exception:
 | |
|         logging.exception("Deal dataset vector index failed")
 | 
