dify/api/models/workflow.py
QuantumGhost 10b738a296
feat: Persist Variables for Enhanced Debugging Workflow (#20699)
This pull request introduces a feature aimed at improving the debugging experience during workflow editing. With the addition of variable persistence, the system will automatically retain the output variables from previously executed nodes. These persisted variables can then be reused when debugging subsequent nodes, eliminating the need for repetitive manual input.

By streamlining this aspect of the workflow, the feature minimizes user errors and significantly reduces debugging effort, offering a smoother and more efficient experience.

Key highlights of this change:

- Automatic persistence of output variables for executed nodes.
- Reuse of persisted variables to simplify input steps for nodes requiring them (e.g., `code`, `template`, `variable_assigner`).
- Enhanced debugging experience with reduced friction.

Closes #19735.
2025-06-24 09:05:29 +08:00

1260 lines
46 KiB
Python

import json
import logging
from collections.abc import Mapping, Sequence
from datetime import UTC, datetime
from enum import Enum, StrEnum
from typing import TYPE_CHECKING, Any, Optional, Union
from uuid import uuid4
from flask_login import current_user
from sqlalchemy import orm
from core.file.constants import maybe_file_object
from core.file.models import File
from core.variables import utils as variable_utils
from core.workflow.constants import CONVERSATION_VARIABLE_NODE_ID, SYSTEM_VARIABLE_NODE_ID
from core.workflow.nodes.enums import NodeType
from factories.variable_factory import TypeMismatchError, build_segment_with_type
from ._workflow_exc import NodeNotFoundError, WorkflowDataError
if TYPE_CHECKING:
from models.model import AppMode
import sqlalchemy as sa
from sqlalchemy import Index, PrimaryKeyConstraint, UniqueConstraint, func
from sqlalchemy.orm import Mapped, declared_attr, mapped_column
from constants import DEFAULT_FILE_NUMBER_LIMITS, HIDDEN_VALUE
from core.helper import encrypter
from core.variables import SecretVariable, Segment, SegmentType, Variable
from factories import variable_factory
from libs import helper
from .account import Account
from .base import Base
from .engine import db
from .enums import CreatorUserRole, DraftVariableType
from .types import EnumText, StringUUID
_logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from models.model import AppMode
class WorkflowType(Enum):
"""
Workflow Type Enum
"""
WORKFLOW = "workflow"
CHAT = "chat"
@classmethod
def value_of(cls, value: str) -> "WorkflowType":
"""
Get value of given mode.
:param value: mode value
:return: mode
"""
for mode in cls:
if mode.value == value:
return mode
raise ValueError(f"invalid workflow type value {value}")
@classmethod
def from_app_mode(cls, app_mode: Union[str, "AppMode"]) -> "WorkflowType":
"""
Get workflow type from app mode.
:param app_mode: app mode
:return: workflow type
"""
from models.model import AppMode
app_mode = app_mode if isinstance(app_mode, AppMode) else AppMode.value_of(app_mode)
return cls.WORKFLOW if app_mode == AppMode.WORKFLOW else cls.CHAT
class _InvalidGraphDefinitionError(Exception):
pass
class Workflow(Base):
"""
Workflow, for `Workflow App` and `Chat App workflow mode`.
Attributes:
- id (uuid) Workflow ID, pk
- tenant_id (uuid) Workspace ID
- app_id (uuid) App ID
- type (string) Workflow type
`workflow` for `Workflow App`
`chat` for `Chat App workflow mode`
- version (string) Version
`draft` for draft version (only one for each app), other for version number (redundant)
- graph (text) Workflow canvas configuration (JSON)
The entire canvas configuration JSON, including Node, Edge, and other configurations
- nodes (array[object]) Node list, see Node Schema
- edges (array[object]) Edge list, see Edge Schema
- created_by (uuid) Creator ID
- created_at (timestamp) Creation time
- updated_by (uuid) `optional` Last updater ID
- updated_at (timestamp) `optional` Last update time
"""
__tablename__ = "workflows"
__table_args__ = (
db.PrimaryKeyConstraint("id", name="workflow_pkey"),
db.Index("workflow_version_idx", "tenant_id", "app_id", "version"),
)
id: Mapped[str] = mapped_column(StringUUID, server_default=db.text("uuid_generate_v4()"))
tenant_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
app_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
type: Mapped[str] = mapped_column(db.String(255), nullable=False)
version: Mapped[str] = mapped_column(db.String(255), nullable=False)
marked_name: Mapped[str] = mapped_column(default="", server_default="")
marked_comment: Mapped[str] = mapped_column(default="", server_default="")
graph: Mapped[str] = mapped_column(sa.Text)
_features: Mapped[str] = mapped_column("features", sa.TEXT)
created_by: Mapped[str] = mapped_column(StringUUID, nullable=False)
created_at: Mapped[datetime] = mapped_column(db.DateTime, nullable=False, server_default=func.current_timestamp())
updated_by: Mapped[Optional[str]] = mapped_column(StringUUID)
updated_at: Mapped[datetime] = mapped_column(
db.DateTime,
nullable=False,
default=datetime.now(UTC).replace(tzinfo=None),
server_onupdate=func.current_timestamp(),
)
_environment_variables: Mapped[str] = mapped_column(
"environment_variables", db.Text, nullable=False, server_default="{}"
)
_conversation_variables: Mapped[str] = mapped_column(
"conversation_variables", db.Text, nullable=False, server_default="{}"
)
VERSION_DRAFT = "draft"
@classmethod
def new(
cls,
*,
tenant_id: str,
app_id: str,
type: str,
version: str,
graph: str,
features: str,
created_by: str,
environment_variables: Sequence[Variable],
conversation_variables: Sequence[Variable],
marked_name: str = "",
marked_comment: str = "",
) -> "Workflow":
workflow = Workflow()
workflow.id = str(uuid4())
workflow.tenant_id = tenant_id
workflow.app_id = app_id
workflow.type = type
workflow.version = version
workflow.graph = graph
workflow.features = features
workflow.created_by = created_by
workflow.environment_variables = environment_variables or []
workflow.conversation_variables = conversation_variables or []
workflow.marked_name = marked_name
workflow.marked_comment = marked_comment
workflow.created_at = datetime.now(UTC).replace(tzinfo=None)
workflow.updated_at = workflow.created_at
return workflow
@property
def created_by_account(self):
return db.session.get(Account, self.created_by)
@property
def updated_by_account(self):
return db.session.get(Account, self.updated_by) if self.updated_by else None
@property
def graph_dict(self) -> Mapping[str, Any]:
# TODO(QuantumGhost): Consider caching `graph_dict` to avoid repeated JSON decoding.
#
# Using `functools.cached_property` could help, but some code in the codebase may
# modify the returned dict, which can cause issues elsewhere.
#
# For example, changing this property to a cached property led to errors like the
# following when single stepping an `Iteration` node:
#
# Root node id 1748401971780start not found in the graph
#
# There is currently no standard way to make a dict deeply immutable in Python,
# and tracking modifications to the returned dict is difficult. For now, we leave
# the code as-is to avoid these issues.
#
# Currently, the following functions / methods would mutate the returned dict:
#
# - `_get_graph_and_variable_pool_of_single_iteration`.
# - `_get_graph_and_variable_pool_of_single_loop`.
return json.loads(self.graph) if self.graph else {}
def get_node_config_by_id(self, node_id: str) -> Mapping[str, Any]:
"""Extract a node configuration from the workflow graph by node ID.
A node configuration is a dictionary containing the node's properties, including
the node's id, title, and its data as a dict.
"""
workflow_graph = self.graph_dict
if not workflow_graph:
raise WorkflowDataError(f"workflow graph not found, workflow_id={self.id}")
nodes = workflow_graph.get("nodes")
if not nodes:
raise WorkflowDataError("nodes not found in workflow graph")
try:
node_config = next(filter(lambda node: node["id"] == node_id, nodes))
except StopIteration:
raise NodeNotFoundError(node_id)
assert isinstance(node_config, dict)
return node_config
@staticmethod
def get_node_type_from_node_config(node_config: Mapping[str, Any]) -> NodeType:
"""Extract type of a node from the node configuration returned by `get_node_config_by_id`."""
node_config_data = node_config.get("data", {})
# Get node class
node_type = NodeType(node_config_data.get("type"))
return node_type
@staticmethod
def get_enclosing_node_type_and_id(node_config: Mapping[str, Any]) -> tuple[NodeType, str] | None:
in_loop = node_config.get("isInLoop", False)
in_iteration = node_config.get("isInIteration", False)
if in_loop:
loop_id = node_config.get("loop_id")
if loop_id is None:
raise _InvalidGraphDefinitionError("invalid graph")
return NodeType.LOOP, loop_id
elif in_iteration:
iteration_id = node_config.get("iteration_id")
if iteration_id is None:
raise _InvalidGraphDefinitionError("invalid graph")
return NodeType.ITERATION, iteration_id
else:
return None
@property
def features(self) -> str:
"""
Convert old features structure to new features structure.
"""
if not self._features:
return self._features
features = json.loads(self._features)
if features.get("file_upload", {}).get("image", {}).get("enabled", False):
image_enabled = True
image_number_limits = int(features["file_upload"]["image"].get("number_limits", DEFAULT_FILE_NUMBER_LIMITS))
image_transfer_methods = features["file_upload"]["image"].get(
"transfer_methods", ["remote_url", "local_file"]
)
features["file_upload"]["enabled"] = image_enabled
features["file_upload"]["number_limits"] = image_number_limits
features["file_upload"]["allowed_file_upload_methods"] = image_transfer_methods
features["file_upload"]["allowed_file_types"] = features["file_upload"].get("allowed_file_types", ["image"])
features["file_upload"]["allowed_file_extensions"] = features["file_upload"].get(
"allowed_file_extensions", []
)
del features["file_upload"]["image"]
self._features = json.dumps(features)
return self._features
@features.setter
def features(self, value: str) -> None:
self._features = value
@property
def features_dict(self) -> dict[str, Any]:
return json.loads(self.features) if self.features else {}
def user_input_form(self, to_old_structure: bool = False) -> list:
# get start node from graph
if not self.graph:
return []
graph_dict = self.graph_dict
if "nodes" not in graph_dict:
return []
start_node = next((node for node in graph_dict["nodes"] if node["data"]["type"] == "start"), None)
if not start_node:
return []
# get user_input_form from start node
variables: list[Any] = start_node.get("data", {}).get("variables", [])
if to_old_structure:
old_structure_variables = []
for variable in variables:
old_structure_variables.append({variable["type"]: variable})
return old_structure_variables
return variables
@property
def unique_hash(self) -> str:
"""
Get hash of workflow.
:return: hash
"""
entity = {"graph": self.graph_dict, "features": self.features_dict}
return helper.generate_text_hash(json.dumps(entity, sort_keys=True))
@property
def tool_published(self) -> bool:
"""
DEPRECATED: This property is not accurate for determining if a workflow is published as a tool.
It only checks if there's a WorkflowToolProvider for the app, not if this specific workflow version
is the one being used by the tool.
For accurate checking, use a direct query with tenant_id, app_id, and version.
"""
from models.tools import WorkflowToolProvider
return (
db.session.query(WorkflowToolProvider)
.filter(WorkflowToolProvider.tenant_id == self.tenant_id, WorkflowToolProvider.app_id == self.app_id)
.count()
> 0
)
@property
def environment_variables(self) -> Sequence[Variable]:
# TODO: find some way to init `self._environment_variables` when instance created.
if self._environment_variables is None:
self._environment_variables = "{}"
# Get tenant_id from current_user (Account or EndUser)
if isinstance(current_user, Account):
# Account user
tenant_id = current_user.current_tenant_id
else:
# EndUser
tenant_id = current_user.tenant_id
if not tenant_id:
return []
environment_variables_dict: dict[str, Any] = json.loads(self._environment_variables)
results = [
variable_factory.build_environment_variable_from_mapping(v) for v in environment_variables_dict.values()
]
# decrypt secret variables value
def decrypt_func(var):
if isinstance(var, SecretVariable):
return var.model_copy(update={"value": encrypter.decrypt_token(tenant_id=tenant_id, token=var.value)})
else:
return var
results = list(map(decrypt_func, results))
return results
@environment_variables.setter
def environment_variables(self, value: Sequence[Variable]):
if not value:
self._environment_variables = "{}"
return
# Get tenant_id from current_user (Account or EndUser)
if isinstance(current_user, Account):
# Account user
tenant_id = current_user.current_tenant_id
else:
# EndUser
tenant_id = current_user.tenant_id
if not tenant_id:
self._environment_variables = "{}"
return
value = list(value)
if any(var for var in value if not var.id):
raise ValueError("environment variable require a unique id")
# Compare inputs and origin variables,
# if the value is HIDDEN_VALUE, use the origin variable value (only update `name`).
origin_variables_dictionary = {var.id: var for var in self.environment_variables}
for i, variable in enumerate(value):
if variable.id in origin_variables_dictionary and variable.value == HIDDEN_VALUE:
value[i] = origin_variables_dictionary[variable.id].model_copy(update={"name": variable.name})
# encrypt secret variables value
def encrypt_func(var):
if isinstance(var, SecretVariable):
return var.model_copy(update={"value": encrypter.encrypt_token(tenant_id=tenant_id, token=var.value)})
else:
return var
encrypted_vars = list(map(encrypt_func, value))
environment_variables_json = json.dumps(
{var.name: var.model_dump() for var in encrypted_vars},
ensure_ascii=False,
)
self._environment_variables = environment_variables_json
def to_dict(self, *, include_secret: bool = False) -> Mapping[str, Any]:
environment_variables = list(self.environment_variables)
environment_variables = [
v if not isinstance(v, SecretVariable) or include_secret else v.model_copy(update={"value": ""})
for v in environment_variables
]
result = {
"graph": self.graph_dict,
"features": self.features_dict,
"environment_variables": [var.model_dump(mode="json") for var in environment_variables],
"conversation_variables": [var.model_dump(mode="json") for var in self.conversation_variables],
}
return result
@property
def conversation_variables(self) -> Sequence[Variable]:
# TODO: find some way to init `self._conversation_variables` when instance created.
if self._conversation_variables is None:
self._conversation_variables = "{}"
variables_dict: dict[str, Any] = json.loads(self._conversation_variables)
results = [variable_factory.build_conversation_variable_from_mapping(v) for v in variables_dict.values()]
return results
@conversation_variables.setter
def conversation_variables(self, value: Sequence[Variable]) -> None:
self._conversation_variables = json.dumps(
{var.name: var.model_dump() for var in value},
ensure_ascii=False,
)
@staticmethod
def version_from_datetime(d: datetime) -> str:
return str(d)
class WorkflowRun(Base):
"""
Workflow Run
Attributes:
- id (uuid) Run ID
- tenant_id (uuid) Workspace ID
- app_id (uuid) App ID
- workflow_id (uuid) Workflow ID
- type (string) Workflow type
- triggered_from (string) Trigger source
`debugging` for canvas debugging
`app-run` for (published) app execution
- version (string) Version
- graph (text) Workflow canvas configuration (JSON)
- inputs (text) Input parameters
- status (string) Execution status, `running` / `succeeded` / `failed` / `stopped`
- outputs (text) `optional` Output content
- error (string) `optional` Error reason
- elapsed_time (float) `optional` Time consumption (s)
- total_tokens (int) `optional` Total tokens used
- total_steps (int) Total steps (redundant), default 0
- created_by_role (string) Creator role
- `account` Console account
- `end_user` End user
- created_by (uuid) Runner ID
- created_at (timestamp) Run time
- finished_at (timestamp) End time
"""
__tablename__ = "workflow_runs"
__table_args__ = (
db.PrimaryKeyConstraint("id", name="workflow_run_pkey"),
db.Index("workflow_run_triggerd_from_idx", "tenant_id", "app_id", "triggered_from"),
)
id: Mapped[str] = mapped_column(StringUUID, server_default=db.text("uuid_generate_v4()"))
tenant_id: Mapped[str] = mapped_column(StringUUID)
app_id: Mapped[str] = mapped_column(StringUUID)
workflow_id: Mapped[str] = mapped_column(StringUUID)
type: Mapped[str] = mapped_column(db.String(255))
triggered_from: Mapped[str] = mapped_column(db.String(255))
version: Mapped[str] = mapped_column(db.String(255))
graph: Mapped[Optional[str]] = mapped_column(db.Text)
inputs: Mapped[Optional[str]] = mapped_column(db.Text)
status: Mapped[str] = mapped_column(db.String(255)) # running, succeeded, failed, stopped, partial-succeeded
outputs: Mapped[Optional[str]] = mapped_column(sa.Text, default="{}")
error: Mapped[Optional[str]] = mapped_column(db.Text)
elapsed_time: Mapped[float] = mapped_column(db.Float, nullable=False, server_default=sa.text("0"))
total_tokens: Mapped[int] = mapped_column(sa.BigInteger, server_default=sa.text("0"))
total_steps: Mapped[int] = mapped_column(db.Integer, server_default=db.text("0"), nullable=True)
created_by_role: Mapped[str] = mapped_column(db.String(255)) # account, end_user
created_by: Mapped[str] = mapped_column(StringUUID, nullable=False)
created_at: Mapped[datetime] = mapped_column(db.DateTime, nullable=False, server_default=func.current_timestamp())
finished_at: Mapped[Optional[datetime]] = mapped_column(db.DateTime)
exceptions_count: Mapped[int] = mapped_column(db.Integer, server_default=db.text("0"), nullable=True)
@property
def created_by_account(self):
created_by_role = CreatorUserRole(self.created_by_role)
return db.session.get(Account, self.created_by) if created_by_role == CreatorUserRole.ACCOUNT else None
@property
def created_by_end_user(self):
from models.model import EndUser
created_by_role = CreatorUserRole(self.created_by_role)
return db.session.get(EndUser, self.created_by) if created_by_role == CreatorUserRole.END_USER else None
@property
def graph_dict(self) -> Mapping[str, Any]:
return json.loads(self.graph) if self.graph else {}
@property
def inputs_dict(self) -> Mapping[str, Any]:
return json.loads(self.inputs) if self.inputs else {}
@property
def outputs_dict(self) -> Mapping[str, Any]:
return json.loads(self.outputs) if self.outputs else {}
@property
def message(self):
from models.model import Message
return (
db.session.query(Message).filter(Message.app_id == self.app_id, Message.workflow_run_id == self.id).first()
)
@property
def workflow(self):
return db.session.query(Workflow).filter(Workflow.id == self.workflow_id).first()
def to_dict(self):
return {
"id": self.id,
"tenant_id": self.tenant_id,
"app_id": self.app_id,
"workflow_id": self.workflow_id,
"type": self.type,
"triggered_from": self.triggered_from,
"version": self.version,
"graph": self.graph_dict,
"inputs": self.inputs_dict,
"status": self.status,
"outputs": self.outputs_dict,
"error": self.error,
"elapsed_time": self.elapsed_time,
"total_tokens": self.total_tokens,
"total_steps": self.total_steps,
"created_by_role": self.created_by_role,
"created_by": self.created_by,
"created_at": self.created_at,
"finished_at": self.finished_at,
"exceptions_count": self.exceptions_count,
}
@classmethod
def from_dict(cls, data: dict) -> "WorkflowRun":
return cls(
id=data.get("id"),
tenant_id=data.get("tenant_id"),
app_id=data.get("app_id"),
workflow_id=data.get("workflow_id"),
type=data.get("type"),
triggered_from=data.get("triggered_from"),
version=data.get("version"),
graph=json.dumps(data.get("graph")),
inputs=json.dumps(data.get("inputs")),
status=data.get("status"),
outputs=json.dumps(data.get("outputs")),
error=data.get("error"),
elapsed_time=data.get("elapsed_time"),
total_tokens=data.get("total_tokens"),
total_steps=data.get("total_steps"),
created_by_role=data.get("created_by_role"),
created_by=data.get("created_by"),
created_at=data.get("created_at"),
finished_at=data.get("finished_at"),
exceptions_count=data.get("exceptions_count"),
)
class WorkflowNodeExecutionTriggeredFrom(StrEnum):
"""
Workflow Node Execution Triggered From Enum
"""
SINGLE_STEP = "single-step"
WORKFLOW_RUN = "workflow-run"
class WorkflowNodeExecutionModel(Base):
"""
Workflow Node Execution
- id (uuid) Execution ID
- tenant_id (uuid) Workspace ID
- app_id (uuid) App ID
- workflow_id (uuid) Workflow ID
- triggered_from (string) Trigger source
`single-step` for single-step debugging
`workflow-run` for workflow execution (debugging / user execution)
- workflow_run_id (uuid) `optional` Workflow run ID
Null for single-step debugging.
- index (int) Execution sequence number, used for displaying Tracing Node order
- predecessor_node_id (string) `optional` Predecessor node ID, used for displaying execution path
- node_id (string) Node ID
- node_type (string) Node type, such as `start`
- title (string) Node title
- inputs (json) All predecessor node variable content used in the node
- process_data (json) Node process data
- outputs (json) `optional` Node output variables
- status (string) Execution status, `running` / `succeeded` / `failed`
- error (string) `optional` Error reason
- elapsed_time (float) `optional` Time consumption (s)
- execution_metadata (text) Metadata
- total_tokens (int) `optional` Total tokens used
- total_price (decimal) `optional` Total cost
- currency (string) `optional` Currency, such as USD / RMB
- created_at (timestamp) Run time
- created_by_role (string) Creator role
- `account` Console account
- `end_user` End user
- created_by (uuid) Runner ID
- finished_at (timestamp) End time
"""
__tablename__ = "workflow_node_executions"
@declared_attr
def __table_args__(cls): # noqa
return (
PrimaryKeyConstraint("id", name="workflow_node_execution_pkey"),
Index(
"workflow_node_execution_workflow_run_idx",
"tenant_id",
"app_id",
"workflow_id",
"triggered_from",
"workflow_run_id",
),
Index(
"workflow_node_execution_node_run_idx",
"tenant_id",
"app_id",
"workflow_id",
"triggered_from",
"node_id",
),
Index(
"workflow_node_execution_id_idx",
"tenant_id",
"app_id",
"workflow_id",
"triggered_from",
"node_execution_id",
),
Index(
# The first argument is the index name,
# which we leave as `None`` to allow auto-generation by the ORM.
None,
cls.tenant_id,
cls.workflow_id,
cls.node_id,
# MyPy may flag the following line because it doesn't recognize that
# the `declared_attr` decorator passes the receiving class as the first
# argument to this method, allowing us to reference class attributes.
cls.created_at.desc(), # type: ignore
),
)
id: Mapped[str] = mapped_column(StringUUID, server_default=db.text("uuid_generate_v4()"))
tenant_id: Mapped[str] = mapped_column(StringUUID)
app_id: Mapped[str] = mapped_column(StringUUID)
workflow_id: Mapped[str] = mapped_column(StringUUID)
triggered_from: Mapped[str] = mapped_column(db.String(255))
workflow_run_id: Mapped[Optional[str]] = mapped_column(StringUUID)
index: Mapped[int] = mapped_column(db.Integer)
predecessor_node_id: Mapped[Optional[str]] = mapped_column(db.String(255))
node_execution_id: Mapped[Optional[str]] = mapped_column(db.String(255))
node_id: Mapped[str] = mapped_column(db.String(255))
node_type: Mapped[str] = mapped_column(db.String(255))
title: Mapped[str] = mapped_column(db.String(255))
inputs: Mapped[Optional[str]] = mapped_column(db.Text)
process_data: Mapped[Optional[str]] = mapped_column(db.Text)
outputs: Mapped[Optional[str]] = mapped_column(db.Text)
status: Mapped[str] = mapped_column(db.String(255))
error: Mapped[Optional[str]] = mapped_column(db.Text)
elapsed_time: Mapped[float] = mapped_column(db.Float, server_default=db.text("0"))
execution_metadata: Mapped[Optional[str]] = mapped_column(db.Text)
created_at: Mapped[datetime] = mapped_column(db.DateTime, server_default=func.current_timestamp())
created_by_role: Mapped[str] = mapped_column(db.String(255))
created_by: Mapped[str] = mapped_column(StringUUID)
finished_at: Mapped[Optional[datetime]] = mapped_column(db.DateTime)
@property
def created_by_account(self):
created_by_role = CreatorUserRole(self.created_by_role)
# TODO(-LAN-): Avoid using db.session.get() here.
return db.session.get(Account, self.created_by) if created_by_role == CreatorUserRole.ACCOUNT else None
@property
def created_by_end_user(self):
from models.model import EndUser
created_by_role = CreatorUserRole(self.created_by_role)
# TODO(-LAN-): Avoid using db.session.get() here.
return db.session.get(EndUser, self.created_by) if created_by_role == CreatorUserRole.END_USER else None
@property
def inputs_dict(self):
return json.loads(self.inputs) if self.inputs else None
@property
def outputs_dict(self) -> dict[str, Any] | None:
return json.loads(self.outputs) if self.outputs else None
@property
def process_data_dict(self):
return json.loads(self.process_data) if self.process_data else None
@property
def execution_metadata_dict(self) -> dict[str, Any]:
# When the metadata is unset, we return an empty dictionary instead of `None`.
# This approach streamlines the logic for the caller, making it easier to handle
# cases where metadata is absent.
return json.loads(self.execution_metadata) if self.execution_metadata else {}
@property
def extras(self):
from core.tools.tool_manager import ToolManager
extras = {}
if self.execution_metadata_dict:
from core.workflow.nodes import NodeType
if self.node_type == NodeType.TOOL.value and "tool_info" in self.execution_metadata_dict:
tool_info = self.execution_metadata_dict["tool_info"]
extras["icon"] = ToolManager.get_tool_icon(
tenant_id=self.tenant_id,
provider_type=tool_info["provider_type"],
provider_id=tool_info["provider_id"],
)
return extras
class WorkflowAppLogCreatedFrom(Enum):
"""
Workflow App Log Created From Enum
"""
SERVICE_API = "service-api"
WEB_APP = "web-app"
INSTALLED_APP = "installed-app"
@classmethod
def value_of(cls, value: str) -> "WorkflowAppLogCreatedFrom":
"""
Get value of given mode.
:param value: mode value
:return: mode
"""
for mode in cls:
if mode.value == value:
return mode
raise ValueError(f"invalid workflow app log created from value {value}")
class WorkflowAppLog(Base):
"""
Workflow App execution log, excluding workflow debugging records.
Attributes:
- id (uuid) run ID
- tenant_id (uuid) Workspace ID
- app_id (uuid) App ID
- workflow_id (uuid) Associated Workflow ID
- workflow_run_id (uuid) Associated Workflow Run ID
- created_from (string) Creation source
`service-api` App Execution OpenAPI
`web-app` WebApp
`installed-app` Installed App
- created_by_role (string) Creator role
- `account` Console account
- `end_user` End user
- created_by (uuid) Creator ID, depends on the user table according to created_by_role
- created_at (timestamp) Creation time
"""
__tablename__ = "workflow_app_logs"
__table_args__ = (
db.PrimaryKeyConstraint("id", name="workflow_app_log_pkey"),
db.Index("workflow_app_log_app_idx", "tenant_id", "app_id"),
)
id: Mapped[str] = mapped_column(StringUUID, server_default=db.text("uuid_generate_v4()"))
tenant_id: Mapped[str] = mapped_column(StringUUID)
app_id: Mapped[str] = mapped_column(StringUUID)
workflow_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
workflow_run_id: Mapped[str] = mapped_column(StringUUID)
created_from: Mapped[str] = mapped_column(db.String(255), nullable=False)
created_by_role: Mapped[str] = mapped_column(db.String(255), nullable=False)
created_by: Mapped[str] = mapped_column(StringUUID, nullable=False)
created_at: Mapped[datetime] = mapped_column(db.DateTime, nullable=False, server_default=func.current_timestamp())
@property
def workflow_run(self):
return db.session.get(WorkflowRun, self.workflow_run_id)
@property
def created_by_account(self):
created_by_role = CreatorUserRole(self.created_by_role)
return db.session.get(Account, self.created_by) if created_by_role == CreatorUserRole.ACCOUNT else None
@property
def created_by_end_user(self):
from models.model import EndUser
created_by_role = CreatorUserRole(self.created_by_role)
return db.session.get(EndUser, self.created_by) if created_by_role == CreatorUserRole.END_USER else None
class ConversationVariable(Base):
__tablename__ = "workflow_conversation_variables"
id: Mapped[str] = mapped_column(StringUUID, primary_key=True)
conversation_id: Mapped[str] = mapped_column(StringUUID, nullable=False, primary_key=True, index=True)
app_id: Mapped[str] = mapped_column(StringUUID, nullable=False, index=True)
data: Mapped[str] = mapped_column(db.Text, nullable=False)
created_at: Mapped[datetime] = mapped_column(
db.DateTime, nullable=False, server_default=func.current_timestamp(), index=True
)
updated_at: Mapped[datetime] = mapped_column(
db.DateTime, nullable=False, server_default=func.current_timestamp(), onupdate=func.current_timestamp()
)
def __init__(self, *, id: str, app_id: str, conversation_id: str, data: str) -> None:
self.id = id
self.app_id = app_id
self.conversation_id = conversation_id
self.data = data
@classmethod
def from_variable(cls, *, app_id: str, conversation_id: str, variable: Variable) -> "ConversationVariable":
obj = cls(
id=variable.id,
app_id=app_id,
conversation_id=conversation_id,
data=variable.model_dump_json(),
)
return obj
def to_variable(self) -> Variable:
mapping = json.loads(self.data)
return variable_factory.build_conversation_variable_from_mapping(mapping)
# Only `sys.query` and `sys.files` could be modified.
_EDITABLE_SYSTEM_VARIABLE = frozenset(["query", "files"])
def _naive_utc_datetime():
return datetime.now(UTC).replace(tzinfo=None)
class WorkflowDraftVariable(Base):
"""`WorkflowDraftVariable` record variables and outputs generated during
debugging worfklow or chatflow.
IMPORTANT: This model maintains multiple invariant rules that must be preserved.
Do not instantiate this class directly with the constructor.
Instead, use the factory methods (`new_conversation_variable`, `new_sys_variable`,
`new_node_variable`) defined below to ensure all invariants are properly maintained.
"""
@staticmethod
def unique_app_id_node_id_name() -> list[str]:
return [
"app_id",
"node_id",
"name",
]
__tablename__ = "workflow_draft_variables"
__table_args__ = (UniqueConstraint(*unique_app_id_node_id_name()),)
# Required for instance variable annotation.
__allow_unmapped__ = True
# id is the unique identifier of a draft variable.
id: Mapped[str] = mapped_column(StringUUID, primary_key=True, server_default=db.text("uuid_generate_v4()"))
created_at: Mapped[datetime] = mapped_column(
db.DateTime,
nullable=False,
default=_naive_utc_datetime,
server_default=func.current_timestamp(),
)
updated_at: Mapped[datetime] = mapped_column(
db.DateTime,
nullable=False,
default=_naive_utc_datetime,
server_default=func.current_timestamp(),
onupdate=func.current_timestamp(),
)
# "`app_id` maps to the `id` field in the `model.App` model."
app_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
# `last_edited_at` records when the value of a given draft variable
# is edited.
#
# If it's not edited after creation, its value is `None`.
last_edited_at: Mapped[datetime | None] = mapped_column(
db.DateTime,
nullable=True,
default=None,
)
# The `node_id` field is special.
#
# If the variable is a conversation variable or a system variable, then the value of `node_id`
# is `conversation` or `sys`, respective.
#
# Otherwise, if the variable is a variable belonging to a specific node, the value of `_node_id` is
# the identity of correspond node in graph definition. An example of node id is `"1745769620734"`.
#
# However, there's one caveat. The id of the first "Answer" node in chatflow is "answer". (Other
# "Answer" node conform the rules above.)
node_id: Mapped[str] = mapped_column(sa.String(255), nullable=False, name="node_id")
# From `VARIABLE_PATTERN`, we may conclude that the length of a top level variable is less than
# 80 chars.
#
# ref: api/core/workflow/entities/variable_pool.py:18
name: Mapped[str] = mapped_column(sa.String(255), nullable=False)
description: Mapped[str] = mapped_column(
sa.String(255),
default="",
nullable=False,
)
selector: Mapped[str] = mapped_column(sa.String(255), nullable=False, name="selector")
# The data type of this variable's value
value_type: Mapped[SegmentType] = mapped_column(EnumText(SegmentType, length=20))
# The variable's value serialized as a JSON string
value: Mapped[str] = mapped_column(sa.Text, nullable=False, name="value")
# Controls whether the variable should be displayed in the variable inspection panel
visible: Mapped[bool] = mapped_column(sa.Boolean, nullable=False, default=True)
# Determines whether this variable can be modified by users
editable: Mapped[bool] = mapped_column(sa.Boolean, nullable=False, default=False)
# The `node_execution_id` field identifies the workflow node execution that created this variable.
# It corresponds to the `id` field in the `WorkflowNodeExecutionModel` model.
#
# This field is not `None` for system variables and node variables, and is `None`
# for conversation variables.
node_execution_id: Mapped[str | None] = mapped_column(
StringUUID,
nullable=True,
default=None,
)
# Cache for deserialized value
#
# NOTE(QuantumGhost): This field serves two purposes:
#
# 1. Caches deserialized values to reduce repeated parsing costs
# 2. Allows modification of the deserialized value after retrieval,
# particularly important for `File`` variables which require database
# lookups to obtain storage_key and other metadata
#
# Use double underscore prefix for better encapsulation,
# making this attribute harder to access from outside the class.
__value: Segment | None
def __init__(self, *args, **kwargs):
"""
The constructor of `WorkflowDraftVariable` is not intended for
direct use outside this file. Its solo purpose is setup private state
used by the model instance.
Please use the factory methods
(`new_conversation_variable`, `new_sys_variable`, `new_node_variable`)
defined below to create instances of this class.
"""
super().__init__(*args, **kwargs)
self.__value = None
@orm.reconstructor
def _init_on_load(self):
self.__value = None
def get_selector(self) -> list[str]:
selector = json.loads(self.selector)
if not isinstance(selector, list):
_logger.error(
"invalid selector loaded from database, type=%s, value=%s",
type(selector),
self.selector,
)
raise ValueError("invalid selector.")
return selector
def _set_selector(self, value: list[str]):
self.selector = json.dumps(value)
def _loads_value(self) -> Segment:
value = json.loads(self.value)
return self.build_segment_with_type(self.value_type, value)
@staticmethod
def rebuild_file_types(value: Any) -> Any:
# NOTE(QuantumGhost): Temporary workaround for structured data handling.
# By this point, `output` has been converted to dict by
# `WorkflowEntry.handle_special_values`, so we need to
# reconstruct File objects from their serialized form
# to maintain proper variable saving behavior.
#
# Ideally, we should work with structured data objects directly
# rather than their serialized forms.
# However, multiple components in the codebase depend on
# `WorkflowEntry.handle_special_values`, making a comprehensive migration challenging.
if isinstance(value, dict):
if not maybe_file_object(value):
return value
return File.model_validate(value)
elif isinstance(value, list) and value:
first = value[0]
if not maybe_file_object(first):
return value
return [File.model_validate(i) for i in value]
else:
return value
@classmethod
def build_segment_with_type(cls, segment_type: SegmentType, value: Any) -> Segment:
# Extends `variable_factory.build_segment_with_type` functionality by
# reconstructing `FileSegment`` or `ArrayFileSegment`` objects from
# their serialized dictionary or list representations, respectively.
if segment_type == SegmentType.FILE:
if isinstance(value, File):
return build_segment_with_type(segment_type, value)
elif isinstance(value, dict):
file = cls.rebuild_file_types(value)
return build_segment_with_type(segment_type, file)
else:
raise TypeMismatchError(f"expected dict or File for FileSegment, got {type(value)}")
if segment_type == SegmentType.ARRAY_FILE:
if not isinstance(value, list):
raise TypeMismatchError(f"expected list for ArrayFileSegment, got {type(value)}")
file_list = cls.rebuild_file_types(value)
return build_segment_with_type(segment_type=segment_type, value=file_list)
return build_segment_with_type(segment_type=segment_type, value=value)
def get_value(self) -> Segment:
"""Decode the serialized value into its corresponding `Segment` object.
This method caches the result, so repeated calls will return the same
object instance without re-parsing the serialized data.
If you need to modify the returned `Segment`, use `value.model_copy()`
to create a copy first to avoid affecting the cached instance.
For more information about the caching mechanism, see the documentation
of the `__value` field.
Returns:
Segment: The deserialized value as a Segment object.
"""
if self.__value is not None:
return self.__value
value = self._loads_value()
self.__value = value
return value
def set_name(self, name: str):
self.name = name
self._set_selector([self.node_id, name])
def set_value(self, value: Segment):
"""Updates the `value` and corresponding `value_type` fields in the database model.
This method also stores the provided Segment object in the deserialized cache
without creating a copy, allowing for efficient value access.
Args:
value: The Segment object to store as the variable's value.
"""
self.__value = value
self.value = json.dumps(value, cls=variable_utils.SegmentJSONEncoder)
self.value_type = value.value_type
def get_node_id(self) -> str | None:
if self.get_variable_type() == DraftVariableType.NODE:
return self.node_id
else:
return None
def get_variable_type(self) -> DraftVariableType:
match self.node_id:
case DraftVariableType.CONVERSATION:
return DraftVariableType.CONVERSATION
case DraftVariableType.SYS:
return DraftVariableType.SYS
case _:
return DraftVariableType.NODE
@classmethod
def _new(
cls,
*,
app_id: str,
node_id: str,
name: str,
value: Segment,
node_execution_id: str | None,
description: str = "",
) -> "WorkflowDraftVariable":
variable = WorkflowDraftVariable()
variable.created_at = _naive_utc_datetime()
variable.updated_at = _naive_utc_datetime()
variable.description = description
variable.app_id = app_id
variable.node_id = node_id
variable.name = name
variable.set_value(value)
variable._set_selector(list(variable_utils.to_selector(node_id, name)))
variable.node_execution_id = node_execution_id
return variable
@classmethod
def new_conversation_variable(
cls,
*,
app_id: str,
name: str,
value: Segment,
description: str = "",
) -> "WorkflowDraftVariable":
variable = cls._new(
app_id=app_id,
node_id=CONVERSATION_VARIABLE_NODE_ID,
name=name,
value=value,
description=description,
node_execution_id=None,
)
variable.editable = True
return variable
@classmethod
def new_sys_variable(
cls,
*,
app_id: str,
name: str,
value: Segment,
node_execution_id: str,
editable: bool = False,
) -> "WorkflowDraftVariable":
variable = cls._new(
app_id=app_id,
node_id=SYSTEM_VARIABLE_NODE_ID,
name=name,
node_execution_id=node_execution_id,
value=value,
)
variable.editable = editable
return variable
@classmethod
def new_node_variable(
cls,
*,
app_id: str,
node_id: str,
name: str,
value: Segment,
node_execution_id: str,
visible: bool = True,
editable: bool = True,
) -> "WorkflowDraftVariable":
variable = cls._new(
app_id=app_id,
node_id=node_id,
name=name,
node_execution_id=node_execution_id,
value=value,
)
variable.visible = visible
variable.editable = editable
return variable
@property
def edited(self):
return self.last_edited_at is not None
def is_system_variable_editable(name: str) -> bool:
return name in _EDITABLE_SYSTEM_VARIABLE