dify/api/models/workflow.py
-LAN- 85cda47c70
feat: knowledge pipeline (#25360)
Signed-off-by: -LAN- <laipz8200@outlook.com>
Co-authored-by: twwu <twwu@dify.ai>
Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com>
Co-authored-by: jyong <718720800@qq.com>
Co-authored-by: Wu Tianwei <30284043+WTW0313@users.noreply.github.com>
Co-authored-by: QuantumGhost <obelisk.reg+git@gmail.com>
Co-authored-by: lyzno1 <yuanyouhuilyz@gmail.com>
Co-authored-by: quicksand <quicksandzn@gmail.com>
Co-authored-by: Jyong <76649700+JohnJyong@users.noreply.github.com>
Co-authored-by: lyzno1 <92089059+lyzno1@users.noreply.github.com>
Co-authored-by: zxhlyh <jasonapring2015@outlook.com>
Co-authored-by: Yongtao Huang <yongtaoh2022@gmail.com>
Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
Co-authored-by: Joel <iamjoel007@gmail.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: nite-knite <nkCoding@gmail.com>
Co-authored-by: Hanqing Zhao <sherry9277@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Harry <xh001x@hotmail.com>
2025-09-18 12:49:10 +08:00

1582 lines
59 KiB
Python

import json
import logging
from collections.abc import Mapping, Sequence
from datetime import datetime
from enum import StrEnum
from typing import TYPE_CHECKING, Any, Optional, Union, cast
from uuid import uuid4
import sqlalchemy as sa
from sqlalchemy import DateTime, Select, exists, orm, select
from core.file.constants import maybe_file_object
from core.file.models import File
from core.variables import utils as variable_utils
from core.variables.variables import FloatVariable, IntegerVariable, StringVariable
from core.workflow.constants import CONVERSATION_VARIABLE_NODE_ID, SYSTEM_VARIABLE_NODE_ID
from core.workflow.enums import NodeType
from extensions.ext_storage import Storage
from factories.variable_factory import TypeMismatchError, build_segment_with_type
from libs.datetime_utils import naive_utc_now
from libs.uuid_utils import uuidv7
from ._workflow_exc import NodeNotFoundError, WorkflowDataError
if TYPE_CHECKING:
from models.model import AppMode, UploadFile
from sqlalchemy import Index, PrimaryKeyConstraint, String, UniqueConstraint, func
from sqlalchemy.orm import Mapped, declared_attr, mapped_column
from constants import DEFAULT_FILE_NUMBER_LIMITS, HIDDEN_VALUE
from core.helper import encrypter
from core.variables import SecretVariable, Segment, SegmentType, Variable
from factories import variable_factory
from libs import helper
from .account import Account
from .base import Base
from .engine import db
from .enums import CreatorUserRole, DraftVariableType, ExecutionOffLoadType
from .types import EnumText, StringUUID
logger = logging.getLogger(__name__)
class WorkflowType(StrEnum):
"""
Workflow Type Enum
"""
WORKFLOW = "workflow"
CHAT = "chat"
RAG_PIPELINE = "rag-pipeline"
@classmethod
def value_of(cls, value: str) -> "WorkflowType":
"""
Get value of given mode.
:param value: mode value
:return: mode
"""
for mode in cls:
if mode.value == value:
return mode
raise ValueError(f"invalid workflow type value {value}")
@classmethod
def from_app_mode(cls, app_mode: Union[str, "AppMode"]) -> "WorkflowType":
"""
Get workflow type from app mode.
:param app_mode: app mode
:return: workflow type
"""
from models.model import AppMode
app_mode = app_mode if isinstance(app_mode, AppMode) else AppMode.value_of(app_mode)
return cls.WORKFLOW if app_mode == AppMode.WORKFLOW else cls.CHAT
class _InvalidGraphDefinitionError(Exception):
pass
class Workflow(Base):
"""
Workflow, for `Workflow App` and `Chat App workflow mode`.
Attributes:
- id (uuid) Workflow ID, pk
- tenant_id (uuid) Workspace ID
- app_id (uuid) App ID
- type (string) Workflow type
`workflow` for `Workflow App`
`chat` for `Chat App workflow mode`
- version (string) Version
`draft` for draft version (only one for each app), other for version number (redundant)
- graph (text) Workflow canvas configuration (JSON)
The entire canvas configuration JSON, including Node, Edge, and other configurations
- nodes (array[object]) Node list, see Node Schema
- edges (array[object]) Edge list, see Edge Schema
- created_by (uuid) Creator ID
- created_at (timestamp) Creation time
- updated_by (uuid) `optional` Last updater ID
- updated_at (timestamp) `optional` Last update time
"""
__tablename__ = "workflows"
__table_args__ = (
sa.PrimaryKeyConstraint("id", name="workflow_pkey"),
sa.Index("workflow_version_idx", "tenant_id", "app_id", "version"),
)
id: Mapped[str] = mapped_column(StringUUID, server_default=sa.text("uuid_generate_v4()"))
tenant_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
app_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
type: Mapped[str] = mapped_column(String(255), nullable=False)
version: Mapped[str] = mapped_column(String(255), nullable=False)
marked_name: Mapped[str] = mapped_column(default="", server_default="")
marked_comment: Mapped[str] = mapped_column(default="", server_default="")
graph: Mapped[str] = mapped_column(sa.Text)
_features: Mapped[str] = mapped_column("features", sa.TEXT)
created_by: Mapped[str] = mapped_column(StringUUID, nullable=False)
created_at: Mapped[datetime] = mapped_column(DateTime, nullable=False, server_default=func.current_timestamp())
updated_by: Mapped[str | None] = mapped_column(StringUUID)
updated_at: Mapped[datetime] = mapped_column(
DateTime,
nullable=False,
default=naive_utc_now(),
server_onupdate=func.current_timestamp(),
)
_environment_variables: Mapped[str] = mapped_column(
"environment_variables", sa.Text, nullable=False, server_default="{}"
)
_conversation_variables: Mapped[str] = mapped_column(
"conversation_variables", sa.Text, nullable=False, server_default="{}"
)
_rag_pipeline_variables: Mapped[str] = mapped_column(
"rag_pipeline_variables", db.Text, nullable=False, server_default="{}"
)
VERSION_DRAFT = "draft"
@classmethod
def new(
cls,
*,
tenant_id: str,
app_id: str,
type: str,
version: str,
graph: str,
features: str,
created_by: str,
environment_variables: Sequence[Variable],
conversation_variables: Sequence[Variable],
rag_pipeline_variables: list[dict],
marked_name: str = "",
marked_comment: str = "",
) -> "Workflow":
workflow = Workflow()
workflow.id = str(uuid4())
workflow.tenant_id = tenant_id
workflow.app_id = app_id
workflow.type = type
workflow.version = version
workflow.graph = graph
workflow.features = features
workflow.created_by = created_by
workflow.environment_variables = environment_variables or []
workflow.conversation_variables = conversation_variables or []
workflow.rag_pipeline_variables = rag_pipeline_variables or []
workflow.marked_name = marked_name
workflow.marked_comment = marked_comment
workflow.created_at = naive_utc_now()
workflow.updated_at = workflow.created_at
return workflow
@property
def created_by_account(self):
return db.session.get(Account, self.created_by)
@property
def updated_by_account(self):
return db.session.get(Account, self.updated_by) if self.updated_by else None
@property
def graph_dict(self) -> Mapping[str, Any]:
# TODO(QuantumGhost): Consider caching `graph_dict` to avoid repeated JSON decoding.
#
# Using `functools.cached_property` could help, but some code in the codebase may
# modify the returned dict, which can cause issues elsewhere.
#
# For example, changing this property to a cached property led to errors like the
# following when single stepping an `Iteration` node:
#
# Root node id 1748401971780start not found in the graph
#
# There is currently no standard way to make a dict deeply immutable in Python,
# and tracking modifications to the returned dict is difficult. For now, we leave
# the code as-is to avoid these issues.
#
# Currently, the following functions / methods would mutate the returned dict:
#
# - `_get_graph_and_variable_pool_of_single_iteration`.
# - `_get_graph_and_variable_pool_of_single_loop`.
return json.loads(self.graph) if self.graph else {}
def get_node_config_by_id(self, node_id: str) -> Mapping[str, Any]:
"""Extract a node configuration from the workflow graph by node ID.
A node configuration is a dictionary containing the node's properties, including
the node's id, title, and its data as a dict.
"""
workflow_graph = self.graph_dict
if not workflow_graph:
raise WorkflowDataError(f"workflow graph not found, workflow_id={self.id}")
nodes = workflow_graph.get("nodes")
if not nodes:
raise WorkflowDataError("nodes not found in workflow graph")
try:
node_config: dict[str, Any] = next(filter(lambda node: node["id"] == node_id, nodes))
except StopIteration:
raise NodeNotFoundError(node_id)
assert isinstance(node_config, dict)
return node_config
@staticmethod
def get_node_type_from_node_config(node_config: Mapping[str, Any]) -> NodeType:
"""Extract type of a node from the node configuration returned by `get_node_config_by_id`."""
node_config_data = node_config.get("data", {})
# Get node class
node_type = NodeType(node_config_data.get("type"))
return node_type
@staticmethod
def get_enclosing_node_type_and_id(node_config: Mapping[str, Any]) -> tuple[NodeType, str] | None:
in_loop = node_config.get("isInLoop", False)
in_iteration = node_config.get("isInIteration", False)
if in_loop:
loop_id = node_config.get("loop_id")
if loop_id is None:
raise _InvalidGraphDefinitionError("invalid graph")
return NodeType.LOOP, loop_id
elif in_iteration:
iteration_id = node_config.get("iteration_id")
if iteration_id is None:
raise _InvalidGraphDefinitionError("invalid graph")
return NodeType.ITERATION, iteration_id
else:
return None
@property
def features(self) -> str:
"""
Convert old features structure to new features structure.
"""
if not self._features:
return self._features
features = json.loads(self._features)
if features.get("file_upload", {}).get("image", {}).get("enabled", False):
image_enabled = True
image_number_limits = int(features["file_upload"]["image"].get("number_limits", DEFAULT_FILE_NUMBER_LIMITS))
image_transfer_methods = features["file_upload"]["image"].get(
"transfer_methods", ["remote_url", "local_file"]
)
features["file_upload"]["enabled"] = image_enabled
features["file_upload"]["number_limits"] = image_number_limits
features["file_upload"]["allowed_file_upload_methods"] = image_transfer_methods
features["file_upload"]["allowed_file_types"] = features["file_upload"].get("allowed_file_types", ["image"])
features["file_upload"]["allowed_file_extensions"] = features["file_upload"].get(
"allowed_file_extensions", []
)
del features["file_upload"]["image"]
self._features = json.dumps(features)
return self._features
@features.setter
def features(self, value: str):
self._features = value
@property
def features_dict(self) -> dict[str, Any]:
return json.loads(self.features) if self.features else {}
def user_input_form(self, to_old_structure: bool = False) -> list[Any]:
# get start node from graph
if not self.graph:
return []
graph_dict = self.graph_dict
if "nodes" not in graph_dict:
return []
start_node = next((node for node in graph_dict["nodes"] if node["data"]["type"] == "start"), None)
if not start_node:
return []
# get user_input_form from start node
variables: list[Any] = start_node.get("data", {}).get("variables", [])
if to_old_structure:
old_structure_variables: list[dict[str, Any]] = []
for variable in variables:
old_structure_variables.append({variable["type"]: variable})
return old_structure_variables
return variables
def rag_pipeline_user_input_form(self) -> list:
# get user_input_form from start node
variables: list[Any] = self.rag_pipeline_variables
return variables
@property
def unique_hash(self) -> str:
"""
Get hash of workflow.
:return: hash
"""
entity = {"graph": self.graph_dict, "features": self.features_dict}
return helper.generate_text_hash(json.dumps(entity, sort_keys=True))
@property
def tool_published(self) -> bool:
"""
DEPRECATED: This property is not accurate for determining if a workflow is published as a tool.
It only checks if there's a WorkflowToolProvider for the app, not if this specific workflow version
is the one being used by the tool.
For accurate checking, use a direct query with tenant_id, app_id, and version.
"""
from models.tools import WorkflowToolProvider
stmt = select(
exists().where(
WorkflowToolProvider.tenant_id == self.tenant_id,
WorkflowToolProvider.app_id == self.app_id,
)
)
return db.session.execute(stmt).scalar_one()
@property
def environment_variables(self) -> Sequence[StringVariable | IntegerVariable | FloatVariable | SecretVariable]:
# _environment_variables is guaranteed to be non-None due to server_default="{}"
# Use workflow.tenant_id to avoid relying on request user in background threads
tenant_id = self.tenant_id
if not tenant_id:
return []
environment_variables_dict: dict[str, Any] = json.loads(self._environment_variables or "{}")
results = [
variable_factory.build_environment_variable_from_mapping(v) for v in environment_variables_dict.values()
]
# decrypt secret variables value
def decrypt_func(var: Variable) -> StringVariable | IntegerVariable | FloatVariable | SecretVariable:
if isinstance(var, SecretVariable):
return var.model_copy(update={"value": encrypter.decrypt_token(tenant_id=tenant_id, token=var.value)})
elif isinstance(var, (StringVariable, IntegerVariable, FloatVariable)):
return var
else:
# Other variable types are not supported for environment variables
raise AssertionError(f"Unexpected variable type for environment variable: {type(var)}")
decrypted_results: list[SecretVariable | StringVariable | IntegerVariable | FloatVariable] = [
decrypt_func(var) for var in results
]
return decrypted_results
@environment_variables.setter
def environment_variables(self, value: Sequence[Variable]):
if not value:
self._environment_variables = "{}"
return
# Use workflow.tenant_id to avoid relying on request user in background threads
tenant_id = self.tenant_id
if not tenant_id:
self._environment_variables = "{}"
return
value = list(value)
if any(var for var in value if not var.id):
raise ValueError("environment variable require a unique id")
# Compare inputs and origin variables,
# if the value is HIDDEN_VALUE, use the origin variable value (only update `name`).
origin_variables_dictionary = {var.id: var for var in self.environment_variables}
for i, variable in enumerate(value):
if variable.id in origin_variables_dictionary and variable.value == HIDDEN_VALUE:
value[i] = origin_variables_dictionary[variable.id].model_copy(update={"name": variable.name})
# encrypt secret variables value
def encrypt_func(var: Variable) -> Variable:
if isinstance(var, SecretVariable):
return var.model_copy(update={"value": encrypter.encrypt_token(tenant_id=tenant_id, token=var.value)})
else:
return var
encrypted_vars = list(map(encrypt_func, value))
environment_variables_json = json.dumps(
{var.name: var.model_dump() for var in encrypted_vars},
ensure_ascii=False,
)
self._environment_variables = environment_variables_json
def to_dict(self, *, include_secret: bool = False) -> Mapping[str, Any]:
environment_variables = list(self.environment_variables)
environment_variables = [
v if not isinstance(v, SecretVariable) or include_secret else v.model_copy(update={"value": ""})
for v in environment_variables
]
result = {
"graph": self.graph_dict,
"features": self.features_dict,
"environment_variables": [var.model_dump(mode="json") for var in environment_variables],
"conversation_variables": [var.model_dump(mode="json") for var in self.conversation_variables],
"rag_pipeline_variables": self.rag_pipeline_variables,
}
return result
@property
def conversation_variables(self) -> Sequence[Variable]:
# _conversation_variables is guaranteed to be non-None due to server_default="{}"
variables_dict: dict[str, Any] = json.loads(self._conversation_variables)
results = [variable_factory.build_conversation_variable_from_mapping(v) for v in variables_dict.values()]
return results
@conversation_variables.setter
def conversation_variables(self, value: Sequence[Variable]):
self._conversation_variables = json.dumps(
{var.name: var.model_dump() for var in value},
ensure_ascii=False,
)
@property
def rag_pipeline_variables(self) -> list[dict]:
# TODO: find some way to init `self._conversation_variables` when instance created.
if self._rag_pipeline_variables is None:
self._rag_pipeline_variables = "{}"
variables_dict: dict[str, Any] = json.loads(self._rag_pipeline_variables)
results = list(variables_dict.values())
return results
@rag_pipeline_variables.setter
def rag_pipeline_variables(self, values: list[dict]) -> None:
self._rag_pipeline_variables = json.dumps(
{item["variable"]: item for item in values},
ensure_ascii=False,
)
@staticmethod
def version_from_datetime(d: datetime) -> str:
return str(d)
class WorkflowRun(Base):
"""
Workflow Run
Attributes:
- id (uuid) Run ID
- tenant_id (uuid) Workspace ID
- app_id (uuid) App ID
- workflow_id (uuid) Workflow ID
- type (string) Workflow type
- triggered_from (string) Trigger source
`debugging` for canvas debugging
`app-run` for (published) app execution
- version (string) Version
- graph (text) Workflow canvas configuration (JSON)
- inputs (text) Input parameters
- status (string) Execution status, `running` / `succeeded` / `failed` / `stopped`
- outputs (text) `optional` Output content
- error (string) `optional` Error reason
- elapsed_time (float) `optional` Time consumption (s)
- total_tokens (int) `optional` Total tokens used
- total_steps (int) Total steps (redundant), default 0
- created_by_role (string) Creator role
- `account` Console account
- `end_user` End user
- created_by (uuid) Runner ID
- created_at (timestamp) Run time
- finished_at (timestamp) End time
"""
__tablename__ = "workflow_runs"
__table_args__ = (
sa.PrimaryKeyConstraint("id", name="workflow_run_pkey"),
sa.Index("workflow_run_triggerd_from_idx", "tenant_id", "app_id", "triggered_from"),
)
id: Mapped[str] = mapped_column(StringUUID, server_default=sa.text("uuid_generate_v4()"))
tenant_id: Mapped[str] = mapped_column(StringUUID)
app_id: Mapped[str] = mapped_column(StringUUID)
workflow_id: Mapped[str] = mapped_column(StringUUID)
type: Mapped[str] = mapped_column(String(255))
triggered_from: Mapped[str] = mapped_column(String(255))
version: Mapped[str] = mapped_column(String(255))
graph: Mapped[str | None] = mapped_column(sa.Text)
inputs: Mapped[str | None] = mapped_column(sa.Text)
status: Mapped[str] = mapped_column(String(255)) # running, succeeded, failed, stopped, partial-succeeded
outputs: Mapped[str | None] = mapped_column(sa.Text, default="{}")
error: Mapped[str | None] = mapped_column(sa.Text)
elapsed_time: Mapped[float] = mapped_column(sa.Float, nullable=False, server_default=sa.text("0"))
total_tokens: Mapped[int] = mapped_column(sa.BigInteger, server_default=sa.text("0"))
total_steps: Mapped[int] = mapped_column(sa.Integer, server_default=sa.text("0"), nullable=True)
created_by_role: Mapped[str] = mapped_column(String(255)) # account, end_user
created_by: Mapped[str] = mapped_column(StringUUID, nullable=False)
created_at: Mapped[datetime] = mapped_column(DateTime, nullable=False, server_default=func.current_timestamp())
finished_at: Mapped[datetime | None] = mapped_column(DateTime)
exceptions_count: Mapped[int] = mapped_column(sa.Integer, server_default=sa.text("0"), nullable=True)
@property
def created_by_account(self):
created_by_role = CreatorUserRole(self.created_by_role)
return db.session.get(Account, self.created_by) if created_by_role == CreatorUserRole.ACCOUNT else None
@property
def created_by_end_user(self):
from models.model import EndUser
created_by_role = CreatorUserRole(self.created_by_role)
return db.session.get(EndUser, self.created_by) if created_by_role == CreatorUserRole.END_USER else None
@property
def graph_dict(self) -> Mapping[str, Any]:
return json.loads(self.graph) if self.graph else {}
@property
def inputs_dict(self) -> Mapping[str, Any]:
return json.loads(self.inputs) if self.inputs else {}
@property
def outputs_dict(self) -> Mapping[str, Any]:
return json.loads(self.outputs) if self.outputs else {}
@property
def message(self):
from models.model import Message
return (
db.session.query(Message).where(Message.app_id == self.app_id, Message.workflow_run_id == self.id).first()
)
@property
def workflow(self):
return db.session.query(Workflow).where(Workflow.id == self.workflow_id).first()
def to_dict(self):
return {
"id": self.id,
"tenant_id": self.tenant_id,
"app_id": self.app_id,
"workflow_id": self.workflow_id,
"type": self.type,
"triggered_from": self.triggered_from,
"version": self.version,
"graph": self.graph_dict,
"inputs": self.inputs_dict,
"status": self.status,
"outputs": self.outputs_dict,
"error": self.error,
"elapsed_time": self.elapsed_time,
"total_tokens": self.total_tokens,
"total_steps": self.total_steps,
"created_by_role": self.created_by_role,
"created_by": self.created_by,
"created_at": self.created_at,
"finished_at": self.finished_at,
"exceptions_count": self.exceptions_count,
}
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "WorkflowRun":
return cls(
id=data.get("id"),
tenant_id=data.get("tenant_id"),
app_id=data.get("app_id"),
workflow_id=data.get("workflow_id"),
type=data.get("type"),
triggered_from=data.get("triggered_from"),
version=data.get("version"),
graph=json.dumps(data.get("graph")),
inputs=json.dumps(data.get("inputs")),
status=data.get("status"),
outputs=json.dumps(data.get("outputs")),
error=data.get("error"),
elapsed_time=data.get("elapsed_time"),
total_tokens=data.get("total_tokens"),
total_steps=data.get("total_steps"),
created_by_role=data.get("created_by_role"),
created_by=data.get("created_by"),
created_at=data.get("created_at"),
finished_at=data.get("finished_at"),
exceptions_count=data.get("exceptions_count"),
)
class WorkflowNodeExecutionTriggeredFrom(StrEnum):
"""
Workflow Node Execution Triggered From Enum
"""
SINGLE_STEP = "single-step"
WORKFLOW_RUN = "workflow-run"
RAG_PIPELINE_RUN = "rag-pipeline-run"
class WorkflowNodeExecutionModel(Base): # This model is expected to have `offload_data` preloaded in most cases.
"""
Workflow Node Execution
- id (uuid) Execution ID
- tenant_id (uuid) Workspace ID
- app_id (uuid) App ID
- workflow_id (uuid) Workflow ID
- triggered_from (string) Trigger source
`single-step` for single-step debugging
`workflow-run` for workflow execution (debugging / user execution)
- workflow_run_id (uuid) `optional` Workflow run ID
Null for single-step debugging.
- index (int) Execution sequence number, used for displaying Tracing Node order
- predecessor_node_id (string) `optional` Predecessor node ID, used for displaying execution path
- node_id (string) Node ID
- node_type (string) Node type, such as `start`
- title (string) Node title
- inputs (json) All predecessor node variable content used in the node
- process_data (json) Node process data
- outputs (json) `optional` Node output variables
- status (string) Execution status, `running` / `succeeded` / `failed`
- error (string) `optional` Error reason
- elapsed_time (float) `optional` Time consumption (s)
- execution_metadata (text) Metadata
- total_tokens (int) `optional` Total tokens used
- total_price (decimal) `optional` Total cost
- currency (string) `optional` Currency, such as USD / RMB
- created_at (timestamp) Run time
- created_by_role (string) Creator role
- `account` Console account
- `end_user` End user
- created_by (uuid) Runner ID
- finished_at (timestamp) End time
"""
__tablename__ = "workflow_node_executions"
@declared_attr
@classmethod
def __table_args__(cls) -> Any:
return (
PrimaryKeyConstraint("id", name="workflow_node_execution_pkey"),
Index(
"workflow_node_execution_workflow_run_idx",
"tenant_id",
"app_id",
"workflow_id",
"triggered_from",
"workflow_run_id",
),
Index(
"workflow_node_execution_node_run_idx",
"tenant_id",
"app_id",
"workflow_id",
"triggered_from",
"node_id",
),
Index(
"workflow_node_execution_id_idx",
"tenant_id",
"app_id",
"workflow_id",
"triggered_from",
"node_execution_id",
),
Index(
# The first argument is the index name,
# which we leave as `None`` to allow auto-generation by the ORM.
None,
cls.tenant_id,
cls.workflow_id,
cls.node_id,
# MyPy may flag the following line because it doesn't recognize that
# the `declared_attr` decorator passes the receiving class as the first
# argument to this method, allowing us to reference class attributes.
cls.created_at.desc(),
),
)
id: Mapped[str] = mapped_column(StringUUID, server_default=sa.text("uuid_generate_v4()"))
tenant_id: Mapped[str] = mapped_column(StringUUID)
app_id: Mapped[str] = mapped_column(StringUUID)
workflow_id: Mapped[str] = mapped_column(StringUUID)
triggered_from: Mapped[str] = mapped_column(String(255))
workflow_run_id: Mapped[str | None] = mapped_column(StringUUID)
index: Mapped[int] = mapped_column(sa.Integer)
predecessor_node_id: Mapped[str | None] = mapped_column(String(255))
node_execution_id: Mapped[str | None] = mapped_column(String(255))
node_id: Mapped[str] = mapped_column(String(255))
node_type: Mapped[str] = mapped_column(String(255))
title: Mapped[str] = mapped_column(String(255))
inputs: Mapped[str | None] = mapped_column(sa.Text)
process_data: Mapped[str | None] = mapped_column(sa.Text)
outputs: Mapped[str | None] = mapped_column(sa.Text)
status: Mapped[str] = mapped_column(String(255))
error: Mapped[str | None] = mapped_column(sa.Text)
elapsed_time: Mapped[float] = mapped_column(sa.Float, server_default=sa.text("0"))
execution_metadata: Mapped[str | None] = mapped_column(sa.Text)
created_at: Mapped[datetime] = mapped_column(DateTime, server_default=func.current_timestamp())
created_by_role: Mapped[str] = mapped_column(String(255))
created_by: Mapped[str] = mapped_column(StringUUID)
finished_at: Mapped[datetime | None] = mapped_column(DateTime)
offload_data: Mapped[list["WorkflowNodeExecutionOffload"]] = orm.relationship(
"WorkflowNodeExecutionOffload",
primaryjoin="WorkflowNodeExecutionModel.id == foreign(WorkflowNodeExecutionOffload.node_execution_id)",
uselist=True,
lazy="raise",
back_populates="execution",
)
@staticmethod
def preload_offload_data(
query: Select[tuple["WorkflowNodeExecutionModel"]] | orm.Query["WorkflowNodeExecutionModel"],
):
return query.options(orm.selectinload(WorkflowNodeExecutionModel.offload_data))
@staticmethod
def preload_offload_data_and_files(
query: Select[tuple["WorkflowNodeExecutionModel"]] | orm.Query["WorkflowNodeExecutionModel"],
):
return query.options(
orm.selectinload(WorkflowNodeExecutionModel.offload_data).options(
# Using `joinedload` instead of `selectinload` to minimize database roundtrips,
# as `selectinload` would require separate queries for `inputs_file` and `outputs_file`.
orm.selectinload(WorkflowNodeExecutionOffload.file),
)
)
@property
def created_by_account(self):
created_by_role = CreatorUserRole(self.created_by_role)
# TODO(-LAN-): Avoid using db.session.get() here.
return db.session.get(Account, self.created_by) if created_by_role == CreatorUserRole.ACCOUNT else None
@property
def created_by_end_user(self):
from models.model import EndUser
created_by_role = CreatorUserRole(self.created_by_role)
# TODO(-LAN-): Avoid using db.session.get() here.
return db.session.get(EndUser, self.created_by) if created_by_role == CreatorUserRole.END_USER else None
@property
def inputs_dict(self):
return json.loads(self.inputs) if self.inputs else None
@property
def outputs_dict(self) -> dict[str, Any] | None:
return json.loads(self.outputs) if self.outputs else None
@property
def process_data_dict(self):
return json.loads(self.process_data) if self.process_data else None
@property
def execution_metadata_dict(self) -> dict[str, Any]:
# When the metadata is unset, we return an empty dictionary instead of `None`.
# This approach streamlines the logic for the caller, making it easier to handle
# cases where metadata is absent.
return json.loads(self.execution_metadata) if self.execution_metadata else {}
@property
def extras(self) -> dict[str, Any]:
from core.tools.tool_manager import ToolManager
extras: dict[str, Any] = {}
if self.execution_metadata_dict:
from core.workflow.nodes import NodeType
if self.node_type == NodeType.TOOL.value and "tool_info" in self.execution_metadata_dict:
tool_info: dict[str, Any] = self.execution_metadata_dict["tool_info"]
extras["icon"] = ToolManager.get_tool_icon(
tenant_id=self.tenant_id,
provider_type=tool_info["provider_type"],
provider_id=tool_info["provider_id"],
)
elif self.node_type == NodeType.DATASOURCE.value and "datasource_info" in self.execution_metadata_dict:
datasource_info = self.execution_metadata_dict["datasource_info"]
extras["icon"] = datasource_info.get("icon")
return extras
def _get_offload_by_type(self, type_: ExecutionOffLoadType) -> Optional["WorkflowNodeExecutionOffload"]:
return next(iter([i for i in self.offload_data if i.type_ == type_]), None)
@property
def inputs_truncated(self) -> bool:
"""Check if inputs were truncated (offloaded to external storage)."""
return self._get_offload_by_type(ExecutionOffLoadType.INPUTS) is not None
@property
def outputs_truncated(self) -> bool:
"""Check if outputs were truncated (offloaded to external storage)."""
return self._get_offload_by_type(ExecutionOffLoadType.OUTPUTS) is not None
@property
def process_data_truncated(self) -> bool:
"""Check if process_data were truncated (offloaded to external storage)."""
return self._get_offload_by_type(ExecutionOffLoadType.PROCESS_DATA) is not None
@staticmethod
def _load_full_content(session: orm.Session, file_id: str, storage: Storage):
from .model import UploadFile
stmt = sa.select(UploadFile).where(UploadFile.id == file_id)
file = session.scalars(stmt).first()
assert file is not None, f"UploadFile with id {file_id} should exist but not"
content = storage.load(file.key)
return json.loads(content)
def load_full_inputs(self, session: orm.Session, storage: Storage) -> Mapping[str, Any] | None:
offload = self._get_offload_by_type(ExecutionOffLoadType.INPUTS)
if offload is None:
return self.inputs_dict
return self._load_full_content(session, offload.file_id, storage)
def load_full_outputs(self, session: orm.Session, storage: Storage) -> Mapping[str, Any] | None:
offload: WorkflowNodeExecutionOffload | None = self._get_offload_by_type(ExecutionOffLoadType.OUTPUTS)
if offload is None:
return self.outputs_dict
return self._load_full_content(session, offload.file_id, storage)
def load_full_process_data(self, session: orm.Session, storage: Storage) -> Mapping[str, Any] | None:
offload: WorkflowNodeExecutionOffload | None = self._get_offload_by_type(ExecutionOffLoadType.PROCESS_DATA)
if offload is None:
return self.process_data_dict
return self._load_full_content(session, offload.file_id, storage)
class WorkflowNodeExecutionOffload(Base):
__tablename__ = "workflow_node_execution_offload"
__table_args__ = (
# PostgreSQL 14 treats NULL values as distinct in unique constraints by default,
# allowing multiple records with NULL values for the same column combination.
#
# This behavior allows us to have multiple records with NULL node_execution_id,
# simplifying garbage collection process.
UniqueConstraint(
"node_execution_id",
"type",
# Note: PostgreSQL 15+ supports explicit `nulls distinct` behavior through
# `postgresql_nulls_not_distinct=False`, which would make our intention clearer.
# We rely on PostgreSQL's default behavior of treating NULLs as distinct values.
# postgresql_nulls_not_distinct=False,
),
)
_HASH_COL_SIZE = 64
id: Mapped[str] = mapped_column(
StringUUID,
primary_key=True,
server_default=sa.text("uuidv7()"),
)
created_at: Mapped[datetime] = mapped_column(
DateTime, default=naive_utc_now, server_default=func.current_timestamp()
)
tenant_id: Mapped[str] = mapped_column(StringUUID)
app_id: Mapped[str] = mapped_column(StringUUID)
# `node_execution_id` indicates the `WorkflowNodeExecutionModel` associated with this offload record.
# A value of `None` signifies that this offload record is not linked to any execution record
# and should be considered for garbage collection.
node_execution_id: Mapped[str | None] = mapped_column(StringUUID, nullable=True)
type_: Mapped[ExecutionOffLoadType] = mapped_column(EnumText(ExecutionOffLoadType), name="type", nullable=False)
# Design Decision: Combining inputs and outputs into a single object was considered to reduce I/O
# operations. However, due to the current design of `WorkflowNodeExecutionRepository`,
# the `save` method is called at two distinct times:
#
# - When the node starts execution: the `inputs` field exists, but the `outputs` field is absent
# - When the node completes execution (either succeeded or failed): the `outputs` field becomes available
#
# It's difficult to correlate these two successive calls to `save` for combined storage.
# Converting the `WorkflowNodeExecutionRepository` to buffer the first `save` call and flush
# when execution completes was also considered, but this would make the execution state unobservable
# until completion, significantly damaging the observability of workflow execution.
#
# Given these constraints, `inputs` and `outputs` are stored separately to maintain real-time
# observability and system reliability.
# `file_id` references to the offloaded storage object containing the data.
file_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
execution: Mapped[WorkflowNodeExecutionModel] = orm.relationship(
foreign_keys=[node_execution_id],
lazy="raise",
uselist=False,
primaryjoin="WorkflowNodeExecutionOffload.node_execution_id == WorkflowNodeExecutionModel.id",
back_populates="offload_data",
)
file: Mapped[Optional["UploadFile"]] = orm.relationship(
foreign_keys=[file_id],
lazy="raise",
uselist=False,
primaryjoin="WorkflowNodeExecutionOffload.file_id == UploadFile.id",
)
class WorkflowAppLogCreatedFrom(StrEnum):
"""
Workflow App Log Created From Enum
"""
SERVICE_API = "service-api"
WEB_APP = "web-app"
INSTALLED_APP = "installed-app"
@classmethod
def value_of(cls, value: str) -> "WorkflowAppLogCreatedFrom":
"""
Get value of given mode.
:param value: mode value
:return: mode
"""
for mode in cls:
if mode.value == value:
return mode
raise ValueError(f"invalid workflow app log created from value {value}")
class WorkflowAppLog(Base):
"""
Workflow App execution log, excluding workflow debugging records.
Attributes:
- id (uuid) run ID
- tenant_id (uuid) Workspace ID
- app_id (uuid) App ID
- workflow_id (uuid) Associated Workflow ID
- workflow_run_id (uuid) Associated Workflow Run ID
- created_from (string) Creation source
`service-api` App Execution OpenAPI
`web-app` WebApp
`installed-app` Installed App
- created_by_role (string) Creator role
- `account` Console account
- `end_user` End user
- created_by (uuid) Creator ID, depends on the user table according to created_by_role
- created_at (timestamp) Creation time
"""
__tablename__ = "workflow_app_logs"
__table_args__ = (
sa.PrimaryKeyConstraint("id", name="workflow_app_log_pkey"),
sa.Index("workflow_app_log_app_idx", "tenant_id", "app_id"),
sa.Index("workflow_app_log_workflow_run_id_idx", "workflow_run_id"),
)
id: Mapped[str] = mapped_column(StringUUID, server_default=sa.text("uuid_generate_v4()"))
tenant_id: Mapped[str] = mapped_column(StringUUID)
app_id: Mapped[str] = mapped_column(StringUUID)
workflow_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
workflow_run_id: Mapped[str] = mapped_column(StringUUID)
created_from: Mapped[str] = mapped_column(String(255), nullable=False)
created_by_role: Mapped[str] = mapped_column(String(255), nullable=False)
created_by: Mapped[str] = mapped_column(StringUUID, nullable=False)
created_at: Mapped[datetime] = mapped_column(DateTime, nullable=False, server_default=func.current_timestamp())
@property
def workflow_run(self):
return db.session.get(WorkflowRun, self.workflow_run_id)
@property
def created_by_account(self):
created_by_role = CreatorUserRole(self.created_by_role)
return db.session.get(Account, self.created_by) if created_by_role == CreatorUserRole.ACCOUNT else None
@property
def created_by_end_user(self):
from models.model import EndUser
created_by_role = CreatorUserRole(self.created_by_role)
return db.session.get(EndUser, self.created_by) if created_by_role == CreatorUserRole.END_USER else None
def to_dict(self):
return {
"id": self.id,
"tenant_id": self.tenant_id,
"app_id": self.app_id,
"workflow_id": self.workflow_id,
"workflow_run_id": self.workflow_run_id,
"created_from": self.created_from,
"created_by_role": self.created_by_role,
"created_by": self.created_by,
"created_at": self.created_at,
}
class ConversationVariable(Base):
__tablename__ = "workflow_conversation_variables"
id: Mapped[str] = mapped_column(StringUUID, primary_key=True)
conversation_id: Mapped[str] = mapped_column(StringUUID, nullable=False, primary_key=True, index=True)
app_id: Mapped[str] = mapped_column(StringUUID, nullable=False, index=True)
data: Mapped[str] = mapped_column(sa.Text, nullable=False)
created_at: Mapped[datetime] = mapped_column(
DateTime, nullable=False, server_default=func.current_timestamp(), index=True
)
updated_at: Mapped[datetime] = mapped_column(
DateTime, nullable=False, server_default=func.current_timestamp(), onupdate=func.current_timestamp()
)
def __init__(self, *, id: str, app_id: str, conversation_id: str, data: str):
self.id = id
self.app_id = app_id
self.conversation_id = conversation_id
self.data = data
@classmethod
def from_variable(cls, *, app_id: str, conversation_id: str, variable: Variable) -> "ConversationVariable":
obj = cls(
id=variable.id,
app_id=app_id,
conversation_id=conversation_id,
data=variable.model_dump_json(),
)
return obj
def to_variable(self) -> Variable:
mapping = json.loads(self.data)
return variable_factory.build_conversation_variable_from_mapping(mapping)
# Only `sys.query` and `sys.files` could be modified.
_EDITABLE_SYSTEM_VARIABLE = frozenset(["query", "files"])
def _naive_utc_datetime():
return naive_utc_now()
class WorkflowDraftVariable(Base):
"""`WorkflowDraftVariable` record variables and outputs generated during
debugging workflow or chatflow.
IMPORTANT: This model maintains multiple invariant rules that must be preserved.
Do not instantiate this class directly with the constructor.
Instead, use the factory methods (`new_conversation_variable`, `new_sys_variable`,
`new_node_variable`) defined below to ensure all invariants are properly maintained.
"""
@staticmethod
def unique_app_id_node_id_name() -> list[str]:
return [
"app_id",
"node_id",
"name",
]
__tablename__ = "workflow_draft_variables"
__table_args__ = (
UniqueConstraint(*unique_app_id_node_id_name()),
Index("workflow_draft_variable_file_id_idx", "file_id"),
)
# Required for instance variable annotation.
__allow_unmapped__ = True
# id is the unique identifier of a draft variable.
id: Mapped[str] = mapped_column(StringUUID, primary_key=True, server_default=sa.text("uuid_generate_v4()"))
created_at: Mapped[datetime] = mapped_column(
DateTime,
nullable=False,
default=_naive_utc_datetime,
server_default=func.current_timestamp(),
)
updated_at: Mapped[datetime] = mapped_column(
DateTime,
nullable=False,
default=_naive_utc_datetime,
server_default=func.current_timestamp(),
onupdate=func.current_timestamp(),
)
# "`app_id` maps to the `id` field in the `model.App` model."
app_id: Mapped[str] = mapped_column(StringUUID, nullable=False)
# `last_edited_at` records when the value of a given draft variable
# is edited.
#
# If it's not edited after creation, its value is `None`.
last_edited_at: Mapped[datetime | None] = mapped_column(
DateTime,
nullable=True,
default=None,
)
# The `node_id` field is special.
#
# If the variable is a conversation variable or a system variable, then the value of `node_id`
# is `conversation` or `sys`, respective.
#
# Otherwise, if the variable is a variable belonging to a specific node, the value of `_node_id` is
# the identity of correspond node in graph definition. An example of node id is `"1745769620734"`.
#
# However, there's one caveat. The id of the first "Answer" node in chatflow is "answer". (Other
# "Answer" node conform the rules above.)
node_id: Mapped[str] = mapped_column(sa.String(255), nullable=False, name="node_id")
# From `VARIABLE_PATTERN`, we may conclude that the length of a top level variable is less than
# 80 chars.
#
# ref: api/core/workflow/entities/variable_pool.py:18
name: Mapped[str] = mapped_column(sa.String(255), nullable=False)
description: Mapped[str] = mapped_column(
sa.String(255),
default="",
nullable=False,
)
selector: Mapped[str] = mapped_column(sa.String(255), nullable=False, name="selector")
# The data type of this variable's value
#
# If the variable is offloaded, `value_type` represents the type of the truncated value,
# which may differ from the original value's type. Typically, they are the same,
# but in cases where the structurally truncated value still exceeds the size limit,
# text slicing is applied, and the `value_type` is converted to `STRING`.
value_type: Mapped[SegmentType] = mapped_column(EnumText(SegmentType, length=20))
# The variable's value serialized as a JSON string
#
# If the variable is offloaded, `value` contains a truncated version, not the full original value.
value: Mapped[str] = mapped_column(sa.Text, nullable=False, name="value")
# Controls whether the variable should be displayed in the variable inspection panel
visible: Mapped[bool] = mapped_column(sa.Boolean, nullable=False, default=True)
# Determines whether this variable can be modified by users
editable: Mapped[bool] = mapped_column(sa.Boolean, nullable=False, default=False)
# The `node_execution_id` field identifies the workflow node execution that created this variable.
# It corresponds to the `id` field in the `WorkflowNodeExecutionModel` model.
#
# This field is not `None` for system variables and node variables, and is `None`
# for conversation variables.
node_execution_id: Mapped[str | None] = mapped_column(
StringUUID,
nullable=True,
default=None,
)
# Reference to WorkflowDraftVariableFile for offloaded large variables
#
# Indicates whether the current draft variable is offloaded.
# If not offloaded, this field will be None.
file_id: Mapped[str | None] = mapped_column(
StringUUID,
nullable=True,
default=None,
comment="Reference to WorkflowDraftVariableFile if variable is offloaded to external storage",
)
is_default_value: Mapped[bool] = mapped_column(
sa.Boolean,
nullable=False,
default=False,
comment=(
"Indicates whether the current value is the default for a conversation variable. "
"Always `FALSE` for other types of variables."
),
)
# Relationship to WorkflowDraftVariableFile
variable_file: Mapped[Optional["WorkflowDraftVariableFile"]] = orm.relationship(
foreign_keys=[file_id],
lazy="raise",
uselist=False,
primaryjoin="WorkflowDraftVariableFile.id == WorkflowDraftVariable.file_id",
)
# Cache for deserialized value
#
# NOTE(QuantumGhost): This field serves two purposes:
#
# 1. Caches deserialized values to reduce repeated parsing costs
# 2. Allows modification of the deserialized value after retrieval,
# particularly important for `File`` variables which require database
# lookups to obtain storage_key and other metadata
#
# Use double underscore prefix for better encapsulation,
# making this attribute harder to access from outside the class.
__value: Segment | None
def __init__(self, *args: Any, **kwargs: Any) -> None:
"""
The constructor of `WorkflowDraftVariable` is not intended for
direct use outside this file. Its solo purpose is setup private state
used by the model instance.
Please use the factory methods
(`new_conversation_variable`, `new_sys_variable`, `new_node_variable`)
defined below to create instances of this class.
"""
super().__init__(*args, **kwargs)
self.__value = None
@orm.reconstructor
def _init_on_load(self):
self.__value = None
def get_selector(self) -> list[str]:
selector: Any = json.loads(self.selector)
if not isinstance(selector, list):
logger.error(
"invalid selector loaded from database, type=%s, value=%s",
type(selector).__name__,
self.selector,
)
raise ValueError("invalid selector.")
return cast(list[str], selector)
def _set_selector(self, value: list[str]):
self.selector = json.dumps(value)
def _loads_value(self) -> Segment:
value = json.loads(self.value)
return self.build_segment_with_type(self.value_type, value)
@staticmethod
def rebuild_file_types(value: Any):
# NOTE(QuantumGhost): Temporary workaround for structured data handling.
# By this point, `output` has been converted to dict by
# `WorkflowEntry.handle_special_values`, so we need to
# reconstruct File objects from their serialized form
# to maintain proper variable saving behavior.
#
# Ideally, we should work with structured data objects directly
# rather than their serialized forms.
# However, multiple components in the codebase depend on
# `WorkflowEntry.handle_special_values`, making a comprehensive migration challenging.
if isinstance(value, dict):
if not maybe_file_object(value):
return cast(Any, value)
return File.model_validate(value)
elif isinstance(value, list) and value:
value_list = cast(list[Any], value)
first: Any = value_list[0]
if not maybe_file_object(first):
return cast(Any, value)
file_list: list[File] = [File.model_validate(cast(dict[str, Any], i)) for i in value_list]
return cast(Any, file_list)
else:
return cast(Any, value)
@classmethod
def build_segment_with_type(cls, segment_type: SegmentType, value: Any) -> Segment:
# Extends `variable_factory.build_segment_with_type` functionality by
# reconstructing `FileSegment`` or `ArrayFileSegment`` objects from
# their serialized dictionary or list representations, respectively.
if segment_type == SegmentType.FILE:
if isinstance(value, File):
return build_segment_with_type(segment_type, value)
elif isinstance(value, dict):
file = cls.rebuild_file_types(value)
return build_segment_with_type(segment_type, file)
else:
raise TypeMismatchError(f"expected dict or File for FileSegment, got {type(value)}")
if segment_type == SegmentType.ARRAY_FILE:
if not isinstance(value, list):
raise TypeMismatchError(f"expected list for ArrayFileSegment, got {type(value)}")
file_list = cls.rebuild_file_types(value)
return build_segment_with_type(segment_type=segment_type, value=file_list)
return build_segment_with_type(segment_type=segment_type, value=value)
def get_value(self) -> Segment:
"""Decode the serialized value into its corresponding `Segment` object.
This method caches the result, so repeated calls will return the same
object instance without re-parsing the serialized data.
If you need to modify the returned `Segment`, use `value.model_copy()`
to create a copy first to avoid affecting the cached instance.
For more information about the caching mechanism, see the documentation
of the `__value` field.
Returns:
Segment: The deserialized value as a Segment object.
"""
if self.__value is not None:
return self.__value
value = self._loads_value()
self.__value = value
return value
def set_name(self, name: str):
self.name = name
self._set_selector([self.node_id, name])
def set_value(self, value: Segment):
"""Updates the `value` and corresponding `value_type` fields in the database model.
This method also stores the provided Segment object in the deserialized cache
without creating a copy, allowing for efficient value access.
Args:
value: The Segment object to store as the variable's value.
"""
self.__value = value
self.value = variable_utils.dumps_with_segments(value)
self.value_type = value.value_type
def get_node_id(self) -> str | None:
if self.get_variable_type() == DraftVariableType.NODE:
return self.node_id
else:
return None
def get_variable_type(self) -> DraftVariableType:
match self.node_id:
case DraftVariableType.CONVERSATION:
return DraftVariableType.CONVERSATION
case DraftVariableType.SYS:
return DraftVariableType.SYS
case _:
return DraftVariableType.NODE
def is_truncated(self) -> bool:
return self.file_id is not None
@classmethod
def _new(
cls,
*,
app_id: str,
node_id: str,
name: str,
value: Segment,
node_execution_id: str | None,
description: str = "",
file_id: str | None = None,
) -> "WorkflowDraftVariable":
variable = WorkflowDraftVariable()
variable.created_at = _naive_utc_datetime()
variable.updated_at = _naive_utc_datetime()
variable.description = description
variable.app_id = app_id
variable.node_id = node_id
variable.name = name
variable.set_value(value)
variable.file_id = file_id
variable._set_selector(list(variable_utils.to_selector(node_id, name)))
variable.node_execution_id = node_execution_id
return variable
@classmethod
def new_conversation_variable(
cls,
*,
app_id: str,
name: str,
value: Segment,
description: str = "",
) -> "WorkflowDraftVariable":
variable = cls._new(
app_id=app_id,
node_id=CONVERSATION_VARIABLE_NODE_ID,
name=name,
value=value,
description=description,
node_execution_id=None,
)
variable.editable = True
return variable
@classmethod
def new_sys_variable(
cls,
*,
app_id: str,
name: str,
value: Segment,
node_execution_id: str,
editable: bool = False,
) -> "WorkflowDraftVariable":
variable = cls._new(
app_id=app_id,
node_id=SYSTEM_VARIABLE_NODE_ID,
name=name,
node_execution_id=node_execution_id,
value=value,
)
variable.editable = editable
return variable
@classmethod
def new_node_variable(
cls,
*,
app_id: str,
node_id: str,
name: str,
value: Segment,
node_execution_id: str,
visible: bool = True,
editable: bool = True,
file_id: str | None = None,
) -> "WorkflowDraftVariable":
variable = cls._new(
app_id=app_id,
node_id=node_id,
name=name,
node_execution_id=node_execution_id,
value=value,
file_id=file_id,
)
variable.visible = visible
variable.editable = editable
return variable
@property
def edited(self):
return self.last_edited_at is not None
class WorkflowDraftVariableFile(Base):
"""Stores metadata about files associated with large workflow draft variables.
This model acts as an intermediary between WorkflowDraftVariable and UploadFile,
allowing for proper cleanup of orphaned files when variables are updated or deleted.
The MIME type of the stored content is recorded in `UploadFile.mime_type`.
Possible values are 'application/json' for JSON types other than plain text,
and 'text/plain' for JSON strings.
"""
__tablename__ = "workflow_draft_variable_files"
# Primary key
id: Mapped[str] = mapped_column(
StringUUID,
primary_key=True,
default=uuidv7,
server_default=sa.text("uuidv7()"),
)
created_at: Mapped[datetime] = mapped_column(
DateTime,
nullable=False,
default=_naive_utc_datetime,
server_default=func.current_timestamp(),
)
tenant_id: Mapped[str] = mapped_column(
StringUUID,
nullable=False,
comment="The tenant to which the WorkflowDraftVariableFile belongs, referencing Tenant.id",
)
app_id: Mapped[str] = mapped_column(
StringUUID,
nullable=False,
comment="The application to which the WorkflowDraftVariableFile belongs, referencing App.id",
)
user_id: Mapped[str] = mapped_column(
StringUUID,
nullable=False,
comment="The owner to of the WorkflowDraftVariableFile, referencing Account.id",
)
# Reference to the `UploadFile.id` field
upload_file_id: Mapped[str] = mapped_column(
StringUUID,
nullable=False,
comment="Reference to UploadFile containing the large variable data",
)
# -------------- metadata about the variable content --------------
# The `size` is already recorded in UploadFiles. It is duplicated here to avoid an additional database lookup.
size: Mapped[int | None] = mapped_column(
sa.BigInteger,
nullable=False,
comment="Size of the original variable content in bytes",
)
length: Mapped[int | None] = mapped_column(
sa.Integer,
nullable=True,
comment=(
"Length of the original variable content. For array and array-like types, "
"this represents the number of elements. For object types, it indicates the number of keys. "
"For other types, the value is NULL."
),
)
# The `value_type` field records the type of the original value.
value_type: Mapped[SegmentType] = mapped_column(
EnumText(SegmentType, length=20),
nullable=False,
)
# Relationship to UploadFile
upload_file: Mapped["UploadFile"] = orm.relationship(
foreign_keys=[upload_file_id],
lazy="raise",
uselist=False,
primaryjoin="WorkflowDraftVariableFile.upload_file_id == UploadFile.id",
)
def is_system_variable_editable(name: str) -> bool:
return name in _EDITABLE_SYSTEM_VARIABLE