mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-30 18:33:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			712 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			712 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import math
 | |
| import threading
 | |
| from collections import Counter
 | |
| from typing import Any, Optional, cast
 | |
| 
 | |
| from flask import Flask, current_app
 | |
| 
 | |
| from core.app.app_config.entities import DatasetEntity, DatasetRetrieveConfigEntity
 | |
| from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
 | |
| from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
 | |
| from core.entities.agent_entities import PlanningStrategy
 | |
| from core.memory.token_buffer_memory import TokenBufferMemory
 | |
| from core.model_manager import ModelInstance, ModelManager
 | |
| from core.model_runtime.entities.message_entities import PromptMessageTool
 | |
| from core.model_runtime.entities.model_entities import ModelFeature, ModelType
 | |
| from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
 | |
| from core.ops.entities.trace_entity import TraceTaskName
 | |
| from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
 | |
| from core.ops.utils import measure_time
 | |
| from core.rag.data_post_processor.data_post_processor import DataPostProcessor
 | |
| from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
 | |
| from core.rag.datasource.retrieval_service import RetrievalService
 | |
| from core.rag.entities.context_entities import DocumentContext
 | |
| from core.rag.models.document import Document
 | |
| from core.rag.rerank.rerank_type import RerankMode
 | |
| from core.rag.retrieval.retrieval_methods import RetrievalMethod
 | |
| from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
 | |
| from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
 | |
| from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
 | |
| from core.tools.tool.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
 | |
| from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
 | |
| from extensions.ext_database import db
 | |
| from models.dataset import Dataset, DatasetQuery, DocumentSegment
 | |
| from models.dataset import Document as DatasetDocument
 | |
| from services.external_knowledge_service import ExternalDatasetService
 | |
| 
 | |
| default_retrieval_model: dict[str, Any] = {
 | |
|     "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
 | |
|     "reranking_enable": False,
 | |
|     "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
 | |
|     "top_k": 2,
 | |
|     "score_threshold_enabled": False,
 | |
| }
 | |
| 
 | |
| 
 | |
| class DatasetRetrieval:
 | |
|     def __init__(self, application_generate_entity=None):
 | |
|         self.application_generate_entity = application_generate_entity
 | |
| 
 | |
|     def retrieve(
 | |
|         self,
 | |
|         app_id: str,
 | |
|         user_id: str,
 | |
|         tenant_id: str,
 | |
|         model_config: ModelConfigWithCredentialsEntity,
 | |
|         config: DatasetEntity,
 | |
|         query: str,
 | |
|         invoke_from: InvokeFrom,
 | |
|         show_retrieve_source: bool,
 | |
|         hit_callback: DatasetIndexToolCallbackHandler,
 | |
|         message_id: str,
 | |
|         memory: Optional[TokenBufferMemory] = None,
 | |
|     ) -> Optional[str]:
 | |
|         """
 | |
|         Retrieve dataset.
 | |
|         :param app_id: app_id
 | |
|         :param user_id: user_id
 | |
|         :param tenant_id: tenant id
 | |
|         :param model_config: model config
 | |
|         :param config: dataset config
 | |
|         :param query: query
 | |
|         :param invoke_from: invoke from
 | |
|         :param show_retrieve_source: show retrieve source
 | |
|         :param hit_callback: hit callback
 | |
|         :param message_id: message id
 | |
|         :param memory: memory
 | |
|         :return:
 | |
|         """
 | |
|         dataset_ids = config.dataset_ids
 | |
|         if len(dataset_ids) == 0:
 | |
|             return None
 | |
|         retrieve_config = config.retrieve_config
 | |
| 
 | |
|         # check model is support tool calling
 | |
|         model_type_instance = model_config.provider_model_bundle.model_type_instance
 | |
|         model_type_instance = cast(LargeLanguageModel, model_type_instance)
 | |
| 
 | |
|         model_manager = ModelManager()
 | |
|         model_instance = model_manager.get_model_instance(
 | |
|             tenant_id=tenant_id, model_type=ModelType.LLM, provider=model_config.provider, model=model_config.model
 | |
|         )
 | |
| 
 | |
|         # get model schema
 | |
|         model_schema = model_type_instance.get_model_schema(
 | |
|             model=model_config.model, credentials=model_config.credentials
 | |
|         )
 | |
| 
 | |
|         if not model_schema:
 | |
|             return None
 | |
| 
 | |
|         planning_strategy = PlanningStrategy.REACT_ROUTER
 | |
|         features = model_schema.features
 | |
|         if features:
 | |
|             if ModelFeature.TOOL_CALL in features or ModelFeature.MULTI_TOOL_CALL in features:
 | |
|                 planning_strategy = PlanningStrategy.ROUTER
 | |
|         available_datasets = []
 | |
|         for dataset_id in dataset_ids:
 | |
|             # get dataset from dataset id
 | |
|             dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 | |
| 
 | |
|             # pass if dataset is not available
 | |
|             if not dataset:
 | |
|                 continue
 | |
| 
 | |
|             # pass if dataset is not available
 | |
|             if dataset and dataset.available_document_count == 0 and dataset.provider != "external":
 | |
|                 continue
 | |
| 
 | |
|             available_datasets.append(dataset)
 | |
|         all_documents = []
 | |
|         user_from = "account" if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end_user"
 | |
|         if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
 | |
|             all_documents = self.single_retrieve(
 | |
|                 app_id,
 | |
|                 tenant_id,
 | |
|                 user_id,
 | |
|                 user_from,
 | |
|                 available_datasets,
 | |
|                 query,
 | |
|                 model_instance,
 | |
|                 model_config,
 | |
|                 planning_strategy,
 | |
|                 message_id,
 | |
|             )
 | |
|         elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
 | |
|             all_documents = self.multiple_retrieve(
 | |
|                 app_id,
 | |
|                 tenant_id,
 | |
|                 user_id,
 | |
|                 user_from,
 | |
|                 available_datasets,
 | |
|                 query,
 | |
|                 retrieve_config.top_k or 0,
 | |
|                 retrieve_config.score_threshold or 0,
 | |
|                 retrieve_config.rerank_mode or "reranking_model",
 | |
|                 retrieve_config.reranking_model,
 | |
|                 retrieve_config.weights,
 | |
|                 retrieve_config.reranking_enabled or True,
 | |
|                 message_id,
 | |
|             )
 | |
| 
 | |
|         dify_documents = [item for item in all_documents if item.provider == "dify"]
 | |
|         external_documents = [item for item in all_documents if item.provider == "external"]
 | |
|         document_context_list = []
 | |
|         retrieval_resource_list = []
 | |
|         # deal with external documents
 | |
|         for item in external_documents:
 | |
|             document_context_list.append(DocumentContext(content=item.page_content, score=item.metadata.get("score")))
 | |
|             source = {
 | |
|                 "dataset_id": item.metadata.get("dataset_id"),
 | |
|                 "dataset_name": item.metadata.get("dataset_name"),
 | |
|                 "document_name": item.metadata.get("title"),
 | |
|                 "data_source_type": "external",
 | |
|                 "retriever_from": invoke_from.to_source(),
 | |
|                 "score": item.metadata.get("score"),
 | |
|                 "content": item.page_content,
 | |
|             }
 | |
|             retrieval_resource_list.append(source)
 | |
|         # deal with dify documents
 | |
|         if dify_documents:
 | |
|             records = RetrievalService.format_retrieval_documents(dify_documents)
 | |
|             if records:
 | |
|                 for record in records:
 | |
|                     segment = record.segment
 | |
|                     if segment.answer:
 | |
|                         document_context_list.append(
 | |
|                             DocumentContext(
 | |
|                                 content=f"question:{segment.get_sign_content()} answer:{segment.answer}",
 | |
|                                 score=record.score,
 | |
|                             )
 | |
|                         )
 | |
|                     else:
 | |
|                         document_context_list.append(
 | |
|                             DocumentContext(
 | |
|                                 content=segment.get_sign_content(),
 | |
|                                 score=record.score,
 | |
|                             )
 | |
|                         )
 | |
|                 if show_retrieve_source:
 | |
|                     for record in records:
 | |
|                         segment = record.segment
 | |
|                         dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
 | |
|                         document = DatasetDocument.query.filter(
 | |
|                             DatasetDocument.id == segment.document_id,
 | |
|                             DatasetDocument.enabled == True,
 | |
|                             DatasetDocument.archived == False,
 | |
|                         ).first()
 | |
|                         if dataset and document:
 | |
|                             source = {
 | |
|                                 "dataset_id": dataset.id,
 | |
|                                 "dataset_name": dataset.name,
 | |
|                                 "document_id": document.id,
 | |
|                                 "document_name": document.name,
 | |
|                                 "data_source_type": document.data_source_type,
 | |
|                                 "segment_id": segment.id,
 | |
|                                 "retriever_from": invoke_from.to_source(),
 | |
|                                 "score": record.score or 0.0,
 | |
|                             }
 | |
| 
 | |
|                             if invoke_from.to_source() == "dev":
 | |
|                                 source["hit_count"] = segment.hit_count
 | |
|                                 source["word_count"] = segment.word_count
 | |
|                                 source["segment_position"] = segment.position
 | |
|                                 source["index_node_hash"] = segment.index_node_hash
 | |
|                             if segment.answer:
 | |
|                                 source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
 | |
|                             else:
 | |
|                                 source["content"] = segment.content
 | |
|                             retrieval_resource_list.append(source)
 | |
|         if hit_callback and retrieval_resource_list:
 | |
|             retrieval_resource_list = sorted(retrieval_resource_list, key=lambda x: x.get("score") or 0.0, reverse=True)
 | |
|             for position, item in enumerate(retrieval_resource_list, start=1):
 | |
|                 item["position"] = position
 | |
|             hit_callback.return_retriever_resource_info(retrieval_resource_list)
 | |
|         if document_context_list:
 | |
|             document_context_list = sorted(document_context_list, key=lambda x: x.score or 0.0, reverse=True)
 | |
|             return str("\n".join([document_context.content for document_context in document_context_list]))
 | |
|         return ""
 | |
| 
 | |
|     def single_retrieve(
 | |
|         self,
 | |
|         app_id: str,
 | |
|         tenant_id: str,
 | |
|         user_id: str,
 | |
|         user_from: str,
 | |
|         available_datasets: list,
 | |
|         query: str,
 | |
|         model_instance: ModelInstance,
 | |
|         model_config: ModelConfigWithCredentialsEntity,
 | |
|         planning_strategy: PlanningStrategy,
 | |
|         message_id: Optional[str] = None,
 | |
|     ):
 | |
|         tools = []
 | |
|         for dataset in available_datasets:
 | |
|             description = dataset.description
 | |
|             if not description:
 | |
|                 description = "useful for when you want to answer queries about the " + dataset.name
 | |
| 
 | |
|             description = description.replace("\n", "").replace("\r", "")
 | |
|             message_tool = PromptMessageTool(
 | |
|                 name=dataset.id,
 | |
|                 description=description,
 | |
|                 parameters={
 | |
|                     "type": "object",
 | |
|                     "properties": {},
 | |
|                     "required": [],
 | |
|                 },
 | |
|             )
 | |
|             tools.append(message_tool)
 | |
|         dataset_id = None
 | |
|         if planning_strategy == PlanningStrategy.REACT_ROUTER:
 | |
|             react_multi_dataset_router = ReactMultiDatasetRouter()
 | |
|             dataset_id = react_multi_dataset_router.invoke(
 | |
|                 query, tools, model_config, model_instance, user_id, tenant_id
 | |
|             )
 | |
| 
 | |
|         elif planning_strategy == PlanningStrategy.ROUTER:
 | |
|             function_call_router = FunctionCallMultiDatasetRouter()
 | |
|             dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)
 | |
| 
 | |
|         if dataset_id:
 | |
|             # get retrieval model config
 | |
|             dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 | |
|             if dataset:
 | |
|                 results = []
 | |
|                 if dataset.provider == "external":
 | |
|                     external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
 | |
|                         tenant_id=dataset.tenant_id,
 | |
|                         dataset_id=dataset_id,
 | |
|                         query=query,
 | |
|                         external_retrieval_parameters=dataset.retrieval_model,
 | |
|                     )
 | |
|                     for external_document in external_documents:
 | |
|                         document = Document(
 | |
|                             page_content=external_document.get("content"),
 | |
|                             metadata=external_document.get("metadata"),
 | |
|                             provider="external",
 | |
|                         )
 | |
|                         if document.metadata is not None:
 | |
|                             document.metadata["score"] = external_document.get("score")
 | |
|                             document.metadata["title"] = external_document.get("title")
 | |
|                             document.metadata["dataset_id"] = dataset_id
 | |
|                             document.metadata["dataset_name"] = dataset.name
 | |
|                         results.append(document)
 | |
|                 else:
 | |
|                     retrieval_model_config = dataset.retrieval_model or default_retrieval_model
 | |
| 
 | |
|                     # get top k
 | |
|                     top_k = retrieval_model_config["top_k"]
 | |
|                     # get retrieval method
 | |
|                     if dataset.indexing_technique == "economy":
 | |
|                         retrieval_method = "keyword_search"
 | |
|                     else:
 | |
|                         retrieval_method = retrieval_model_config["search_method"]
 | |
|                     # get reranking model
 | |
|                     reranking_model = (
 | |
|                         retrieval_model_config["reranking_model"]
 | |
|                         if retrieval_model_config["reranking_enable"]
 | |
|                         else None
 | |
|                     )
 | |
|                     # get score threshold
 | |
|                     score_threshold = 0.0
 | |
|                     score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
 | |
|                     if score_threshold_enabled:
 | |
|                         score_threshold = retrieval_model_config.get("score_threshold", 0.0)
 | |
| 
 | |
|                     with measure_time() as timer:
 | |
|                         results = RetrievalService.retrieve(
 | |
|                             retrieval_method=retrieval_method,
 | |
|                             dataset_id=dataset.id,
 | |
|                             query=query,
 | |
|                             top_k=top_k,
 | |
|                             score_threshold=score_threshold,
 | |
|                             reranking_model=reranking_model,
 | |
|                             reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
 | |
|                             weights=retrieval_model_config.get("weights", None),
 | |
|                         )
 | |
|                 self._on_query(query, [dataset_id], app_id, user_from, user_id)
 | |
| 
 | |
|                 if results:
 | |
|                     self._on_retrieval_end(results, message_id, timer)
 | |
| 
 | |
|                 return results
 | |
|         return []
 | |
| 
 | |
|     def multiple_retrieve(
 | |
|         self,
 | |
|         app_id: str,
 | |
|         tenant_id: str,
 | |
|         user_id: str,
 | |
|         user_from: str,
 | |
|         available_datasets: list,
 | |
|         query: str,
 | |
|         top_k: int,
 | |
|         score_threshold: float,
 | |
|         reranking_mode: str,
 | |
|         reranking_model: Optional[dict] = None,
 | |
|         weights: Optional[dict[str, Any]] = None,
 | |
|         reranking_enable: bool = True,
 | |
|         message_id: Optional[str] = None,
 | |
|     ):
 | |
|         if not available_datasets:
 | |
|             return []
 | |
|         threads = []
 | |
|         all_documents: list[Document] = []
 | |
|         dataset_ids = [dataset.id for dataset in available_datasets]
 | |
|         index_type_check = all(
 | |
|             item.indexing_technique == available_datasets[0].indexing_technique for item in available_datasets
 | |
|         )
 | |
|         if not index_type_check and (not reranking_enable or reranking_mode != RerankMode.RERANKING_MODEL):
 | |
|             raise ValueError(
 | |
|                 "The configured knowledge base list have different indexing technique, please set reranking model."
 | |
|             )
 | |
|         index_type = available_datasets[0].indexing_technique
 | |
|         if index_type == "high_quality":
 | |
|             embedding_model_check = all(
 | |
|                 item.embedding_model == available_datasets[0].embedding_model for item in available_datasets
 | |
|             )
 | |
|             embedding_model_provider_check = all(
 | |
|                 item.embedding_model_provider == available_datasets[0].embedding_model_provider
 | |
|                 for item in available_datasets
 | |
|             )
 | |
|             if (
 | |
|                 reranking_enable
 | |
|                 and reranking_mode == "weighted_score"
 | |
|                 and (not embedding_model_check or not embedding_model_provider_check)
 | |
|             ):
 | |
|                 raise ValueError(
 | |
|                     "The configured knowledge base list have different embedding model, please set reranking model."
 | |
|                 )
 | |
|             if reranking_enable and reranking_mode == RerankMode.WEIGHTED_SCORE:
 | |
|                 if weights is not None:
 | |
|                     weights["vector_setting"]["embedding_provider_name"] = available_datasets[
 | |
|                         0
 | |
|                     ].embedding_model_provider
 | |
|                     weights["vector_setting"]["embedding_model_name"] = available_datasets[0].embedding_model
 | |
| 
 | |
|         for dataset in available_datasets:
 | |
|             index_type = dataset.indexing_technique
 | |
|             retrieval_thread = threading.Thread(
 | |
|                 target=self._retriever,
 | |
|                 kwargs={
 | |
|                     "flask_app": current_app._get_current_object(),  # type: ignore
 | |
|                     "dataset_id": dataset.id,
 | |
|                     "query": query,
 | |
|                     "top_k": top_k,
 | |
|                     "all_documents": all_documents,
 | |
|                 },
 | |
|             )
 | |
|             threads.append(retrieval_thread)
 | |
|             retrieval_thread.start()
 | |
|         for thread in threads:
 | |
|             thread.join()
 | |
| 
 | |
|         with measure_time() as timer:
 | |
|             if reranking_enable:
 | |
|                 # do rerank for searched documents
 | |
|                 data_post_processor = DataPostProcessor(tenant_id, reranking_mode, reranking_model, weights, False)
 | |
| 
 | |
|                 all_documents = data_post_processor.invoke(
 | |
|                     query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
 | |
|                 )
 | |
|             else:
 | |
|                 if index_type == "economy":
 | |
|                     all_documents = self.calculate_keyword_score(query, all_documents, top_k)
 | |
|                 elif index_type == "high_quality":
 | |
|                     all_documents = self.calculate_vector_score(all_documents, top_k, score_threshold)
 | |
| 
 | |
|         self._on_query(query, dataset_ids, app_id, user_from, user_id)
 | |
| 
 | |
|         if all_documents:
 | |
|             self._on_retrieval_end(all_documents, message_id, timer)
 | |
| 
 | |
|         return all_documents
 | |
| 
 | |
|     def _on_retrieval_end(
 | |
|         self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
 | |
|     ) -> None:
 | |
|         """Handle retrieval end."""
 | |
|         dify_documents = [document for document in documents if document.provider == "dify"]
 | |
|         for document in dify_documents:
 | |
|             if document.metadata is not None:
 | |
|                 query = db.session.query(DocumentSegment).filter(
 | |
|                     DocumentSegment.index_node_id == document.metadata["doc_id"]
 | |
|                 )
 | |
| 
 | |
|                 # if 'dataset_id' in document.metadata:
 | |
|                 if "dataset_id" in document.metadata:
 | |
|                     query = query.filter(DocumentSegment.dataset_id == document.metadata["dataset_id"])
 | |
| 
 | |
|                 # add hit count to document segment
 | |
|                 query.update({DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False)
 | |
| 
 | |
|                 db.session.commit()
 | |
| 
 | |
|         # get tracing instance
 | |
|         trace_manager: Optional[TraceQueueManager] = (
 | |
|             self.application_generate_entity.trace_manager if self.application_generate_entity else None
 | |
|         )
 | |
|         if trace_manager:
 | |
|             trace_manager.add_trace_task(
 | |
|                 TraceTask(
 | |
|                     TraceTaskName.DATASET_RETRIEVAL_TRACE, message_id=message_id, documents=documents, timer=timer
 | |
|                 )
 | |
|             )
 | |
| 
 | |
|     def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
 | |
|         """
 | |
|         Handle query.
 | |
|         """
 | |
|         if not query:
 | |
|             return
 | |
|         dataset_queries = []
 | |
|         for dataset_id in dataset_ids:
 | |
|             dataset_query = DatasetQuery(
 | |
|                 dataset_id=dataset_id,
 | |
|                 content=query,
 | |
|                 source="app",
 | |
|                 source_app_id=app_id,
 | |
|                 created_by_role=user_from,
 | |
|                 created_by=user_id,
 | |
|             )
 | |
|             dataset_queries.append(dataset_query)
 | |
|         if dataset_queries:
 | |
|             db.session.add_all(dataset_queries)
 | |
|         db.session.commit()
 | |
| 
 | |
|     def _retriever(self, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list):
 | |
|         with flask_app.app_context():
 | |
|             dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
 | |
| 
 | |
|             if not dataset:
 | |
|                 return []
 | |
| 
 | |
|             if dataset.provider == "external":
 | |
|                 external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
 | |
|                     tenant_id=dataset.tenant_id,
 | |
|                     dataset_id=dataset_id,
 | |
|                     query=query,
 | |
|                     external_retrieval_parameters=dataset.retrieval_model,
 | |
|                 )
 | |
|                 for external_document in external_documents:
 | |
|                     document = Document(
 | |
|                         page_content=external_document.get("content"),
 | |
|                         metadata=external_document.get("metadata"),
 | |
|                         provider="external",
 | |
|                     )
 | |
|                     if document.metadata is not None:
 | |
|                         document.metadata["score"] = external_document.get("score")
 | |
|                         document.metadata["title"] = external_document.get("title")
 | |
|                         document.metadata["dataset_id"] = dataset_id
 | |
|                         document.metadata["dataset_name"] = dataset.name
 | |
|                     all_documents.append(document)
 | |
|             else:
 | |
|                 # get retrieval model , if the model is not setting , using default
 | |
|                 retrieval_model = dataset.retrieval_model or default_retrieval_model
 | |
| 
 | |
|                 if dataset.indexing_technique == "economy":
 | |
|                     # use keyword table query
 | |
|                     documents = RetrievalService.retrieve(
 | |
|                         retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=top_k
 | |
|                     )
 | |
|                     if documents:
 | |
|                         all_documents.extend(documents)
 | |
|                 else:
 | |
|                     if top_k > 0:
 | |
|                         # retrieval source
 | |
|                         documents = RetrievalService.retrieve(
 | |
|                             retrieval_method=retrieval_model["search_method"],
 | |
|                             dataset_id=dataset.id,
 | |
|                             query=query,
 | |
|                             top_k=retrieval_model.get("top_k") or 2,
 | |
|                             score_threshold=retrieval_model.get("score_threshold", 0.0)
 | |
|                             if retrieval_model["score_threshold_enabled"]
 | |
|                             else 0.0,
 | |
|                             reranking_model=retrieval_model.get("reranking_model", None)
 | |
|                             if retrieval_model["reranking_enable"]
 | |
|                             else None,
 | |
|                             reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
 | |
|                             weights=retrieval_model.get("weights", None),
 | |
|                         )
 | |
| 
 | |
|                         all_documents.extend(documents)
 | |
| 
 | |
|     def to_dataset_retriever_tool(
 | |
|         self,
 | |
|         tenant_id: str,
 | |
|         dataset_ids: list[str],
 | |
|         retrieve_config: DatasetRetrieveConfigEntity,
 | |
|         return_resource: bool,
 | |
|         invoke_from: InvokeFrom,
 | |
|         hit_callback: DatasetIndexToolCallbackHandler,
 | |
|     ) -> Optional[list[DatasetRetrieverBaseTool]]:
 | |
|         """
 | |
|         A dataset tool is a tool that can be used to retrieve information from a dataset
 | |
|         :param tenant_id: tenant id
 | |
|         :param dataset_ids: dataset ids
 | |
|         :param retrieve_config: retrieve config
 | |
|         :param return_resource: return resource
 | |
|         :param invoke_from: invoke from
 | |
|         :param hit_callback: hit callback
 | |
|         """
 | |
|         tools = []
 | |
|         available_datasets = []
 | |
|         for dataset_id in dataset_ids:
 | |
|             # get dataset from dataset id
 | |
|             dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 | |
| 
 | |
|             # pass if dataset is not available
 | |
|             if not dataset:
 | |
|                 continue
 | |
| 
 | |
|             # pass if dataset is not available
 | |
|             if dataset and dataset.provider != "external" and dataset.available_document_count == 0:
 | |
|                 continue
 | |
| 
 | |
|             available_datasets.append(dataset)
 | |
| 
 | |
|         if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
 | |
|             # get retrieval model config
 | |
|             default_retrieval_model = {
 | |
|                 "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
 | |
|                 "reranking_enable": False,
 | |
|                 "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
 | |
|                 "top_k": 2,
 | |
|                 "score_threshold_enabled": False,
 | |
|             }
 | |
| 
 | |
|             for dataset in available_datasets:
 | |
|                 retrieval_model_config = dataset.retrieval_model or default_retrieval_model
 | |
| 
 | |
|                 # get top k
 | |
|                 top_k = retrieval_model_config["top_k"]
 | |
| 
 | |
|                 # get score threshold
 | |
|                 score_threshold = None
 | |
|                 score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
 | |
|                 if score_threshold_enabled:
 | |
|                     score_threshold = retrieval_model_config.get("score_threshold")
 | |
| 
 | |
|                 tool = DatasetRetrieverTool.from_dataset(
 | |
|                     dataset=dataset,
 | |
|                     top_k=top_k,
 | |
|                     score_threshold=score_threshold,
 | |
|                     hit_callbacks=[hit_callback],
 | |
|                     return_resource=return_resource,
 | |
|                     retriever_from=invoke_from.to_source(),
 | |
|                 )
 | |
| 
 | |
|                 tools.append(tool)
 | |
|         elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
 | |
|             if retrieve_config.reranking_model is not None:
 | |
|                 tool = DatasetMultiRetrieverTool.from_dataset(
 | |
|                     dataset_ids=[dataset.id for dataset in available_datasets],
 | |
|                     tenant_id=tenant_id,
 | |
|                     top_k=retrieve_config.top_k or 2,
 | |
|                     score_threshold=retrieve_config.score_threshold,
 | |
|                     hit_callbacks=[hit_callback],
 | |
|                     return_resource=return_resource,
 | |
|                     retriever_from=invoke_from.to_source(),
 | |
|                     reranking_provider_name=retrieve_config.reranking_model.get("reranking_provider_name"),
 | |
|                     reranking_model_name=retrieve_config.reranking_model.get("reranking_model_name"),
 | |
|                 )
 | |
| 
 | |
|                 tools.append(tool)
 | |
| 
 | |
|         return tools
 | |
| 
 | |
|     def calculate_keyword_score(self, query: str, documents: list[Document], top_k: int) -> list[Document]:
 | |
|         """
 | |
|         Calculate keywords scores
 | |
|         :param query: search query
 | |
|         :param documents: documents for reranking
 | |
| 
 | |
|         :return:
 | |
|         """
 | |
|         keyword_table_handler = JiebaKeywordTableHandler()
 | |
|         query_keywords = keyword_table_handler.extract_keywords(query, None)
 | |
|         documents_keywords = []
 | |
|         for document in documents:
 | |
|             if document.metadata is not None:
 | |
|                 # get the document keywords
 | |
|                 document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
 | |
|                 document.metadata["keywords"] = document_keywords
 | |
|                 documents_keywords.append(document_keywords)
 | |
| 
 | |
|         # Counter query keywords(TF)
 | |
|         query_keyword_counts = Counter(query_keywords)
 | |
| 
 | |
|         # total documents
 | |
|         total_documents = len(documents)
 | |
| 
 | |
|         # calculate all documents' keywords IDF
 | |
|         all_keywords = set()
 | |
|         for document_keywords in documents_keywords:
 | |
|             all_keywords.update(document_keywords)
 | |
| 
 | |
|         keyword_idf = {}
 | |
|         for keyword in all_keywords:
 | |
|             # calculate include query keywords' documents
 | |
|             doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)
 | |
|             # IDF
 | |
|             keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1
 | |
| 
 | |
|         query_tfidf = {}
 | |
| 
 | |
|         for keyword, count in query_keyword_counts.items():
 | |
|             tf = count
 | |
|             idf = keyword_idf.get(keyword, 0)
 | |
|             query_tfidf[keyword] = tf * idf
 | |
| 
 | |
|         # calculate all documents' TF-IDF
 | |
|         documents_tfidf = []
 | |
|         for document_keywords in documents_keywords:
 | |
|             document_keyword_counts = Counter(document_keywords)
 | |
|             document_tfidf = {}
 | |
|             for keyword, count in document_keyword_counts.items():
 | |
|                 tf = count
 | |
|                 idf = keyword_idf.get(keyword, 0)
 | |
|                 document_tfidf[keyword] = tf * idf
 | |
|             documents_tfidf.append(document_tfidf)
 | |
| 
 | |
|         def cosine_similarity(vec1, vec2):
 | |
|             intersection = set(vec1.keys()) & set(vec2.keys())
 | |
|             numerator = sum(vec1[x] * vec2[x] for x in intersection)
 | |
| 
 | |
|             sum1 = sum(vec1[x] ** 2 for x in vec1)
 | |
|             sum2 = sum(vec2[x] ** 2 for x in vec2)
 | |
|             denominator = math.sqrt(sum1) * math.sqrt(sum2)
 | |
| 
 | |
|             if not denominator:
 | |
|                 return 0.0
 | |
|             else:
 | |
|                 return float(numerator) / denominator
 | |
| 
 | |
|         similarities = []
 | |
|         for document_tfidf in documents_tfidf:
 | |
|             similarity = cosine_similarity(query_tfidf, document_tfidf)
 | |
|             similarities.append(similarity)
 | |
| 
 | |
|         for document, score in zip(documents, similarities):
 | |
|             # format document
 | |
|             if document.metadata is not None:
 | |
|                 document.metadata["score"] = score
 | |
|         documents = sorted(documents, key=lambda x: x.metadata.get("score", 0) if x.metadata else 0, reverse=True)
 | |
|         return documents[:top_k] if top_k else documents
 | |
| 
 | |
|     def calculate_vector_score(
 | |
|         self, all_documents: list[Document], top_k: int, score_threshold: float
 | |
|     ) -> list[Document]:
 | |
|         filter_documents = []
 | |
|         for document in all_documents:
 | |
|             if score_threshold is None or (document.metadata and document.metadata.get("score", 0) >= score_threshold):
 | |
|                 filter_documents.append(document)
 | |
| 
 | |
|         if not filter_documents:
 | |
|             return []
 | |
|         filter_documents = sorted(
 | |
|             filter_documents, key=lambda x: x.metadata.get("score", 0) if x.metadata else 0, reverse=True
 | |
|         )
 | |
|         return filter_documents[:top_k] if top_k else filter_documents
 | 
