mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-31 19:03:09 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			124 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			124 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import datetime
 | |
| import logging
 | |
| import time
 | |
| import uuid
 | |
| 
 | |
| import click
 | |
| from celery import shared_task  # type: ignore
 | |
| from sqlalchemy import func, select
 | |
| from sqlalchemy.orm import Session
 | |
| 
 | |
| from core.model_manager import ModelManager
 | |
| from core.model_runtime.entities.model_entities import ModelType
 | |
| from extensions.ext_database import db
 | |
| from extensions.ext_redis import redis_client
 | |
| from libs import helper
 | |
| from models.dataset import Dataset, Document, DocumentSegment
 | |
| from services.vector_service import VectorService
 | |
| 
 | |
| 
 | |
| @shared_task(queue="dataset")
 | |
| def batch_create_segment_to_index_task(
 | |
|     job_id: str,
 | |
|     content: list,
 | |
|     dataset_id: str,
 | |
|     document_id: str,
 | |
|     tenant_id: str,
 | |
|     user_id: str,
 | |
| ):
 | |
|     """
 | |
|     Async batch create segment to index
 | |
|     :param job_id:
 | |
|     :param content:
 | |
|     :param dataset_id:
 | |
|     :param document_id:
 | |
|     :param tenant_id:
 | |
|     :param user_id:
 | |
| 
 | |
|     Usage: batch_create_segment_to_index_task.delay(segment_id)
 | |
|     """
 | |
|     logging.info(click.style("Start batch create segment jobId: {}".format(job_id), fg="green"))
 | |
|     start_at = time.perf_counter()
 | |
| 
 | |
|     indexing_cache_key = "segment_batch_import_{}".format(job_id)
 | |
| 
 | |
|     try:
 | |
|         with Session(db.engine) as session:
 | |
|             dataset = session.get(Dataset, dataset_id)
 | |
|             if not dataset:
 | |
|                 raise ValueError("Dataset not exist.")
 | |
| 
 | |
|             dataset_document = session.get(Document, document_id)
 | |
|             if not dataset_document:
 | |
|                 raise ValueError("Document not exist.")
 | |
| 
 | |
|             if (
 | |
|                 not dataset_document.enabled
 | |
|                 or dataset_document.archived
 | |
|                 or dataset_document.indexing_status != "completed"
 | |
|             ):
 | |
|                 raise ValueError("Document is not available.")
 | |
|             document_segments = []
 | |
|             embedding_model = None
 | |
|             if dataset.indexing_technique == "high_quality":
 | |
|                 model_manager = ModelManager()
 | |
|                 embedding_model = model_manager.get_model_instance(
 | |
|                     tenant_id=dataset.tenant_id,
 | |
|                     provider=dataset.embedding_model_provider,
 | |
|                     model_type=ModelType.TEXT_EMBEDDING,
 | |
|                     model=dataset.embedding_model,
 | |
|                 )
 | |
|             word_count_change = 0
 | |
|             segments_to_insert: list[str] = []
 | |
|             max_position_stmt = select(func.max(DocumentSegment.position)).where(
 | |
|                 DocumentSegment.document_id == dataset_document.id
 | |
|             )
 | |
|             max_position = session.scalar(max_position_stmt) or 1
 | |
|             for segment in content:
 | |
|                 content_str = segment["content"]
 | |
|                 doc_id = str(uuid.uuid4())
 | |
|                 segment_hash = helper.generate_text_hash(content_str)
 | |
|                 # calc embedding use tokens
 | |
|                 tokens = embedding_model.get_text_embedding_num_tokens(texts=[content_str]) if embedding_model else 0
 | |
|                 segment_document = DocumentSegment(
 | |
|                     tenant_id=tenant_id,
 | |
|                     dataset_id=dataset_id,
 | |
|                     document_id=document_id,
 | |
|                     index_node_id=doc_id,
 | |
|                     index_node_hash=segment_hash,
 | |
|                     position=max_position,
 | |
|                     content=content_str,
 | |
|                     word_count=len(content_str),
 | |
|                     tokens=tokens,
 | |
|                     created_by=user_id,
 | |
|                     indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
 | |
|                     status="completed",
 | |
|                     completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
 | |
|                 )
 | |
|                 max_position += 1
 | |
|                 if dataset_document.doc_form == "qa_model":
 | |
|                     segment_document.answer = segment["answer"]
 | |
|                     segment_document.word_count += len(segment["answer"])
 | |
|                 word_count_change += segment_document.word_count
 | |
|                 session.add(segment_document)
 | |
|                 document_segments.append(segment_document)
 | |
|                 segments_to_insert.append(str(segment))  # Cast to string if needed
 | |
|             # update document word count
 | |
|             dataset_document.word_count += word_count_change
 | |
|             session.add(dataset_document)
 | |
|             # add index to db
 | |
|             VectorService.create_segments_vector(None, document_segments, dataset, dataset_document.doc_form)
 | |
|             session.commit()
 | |
| 
 | |
|         redis_client.setex(indexing_cache_key, 600, "completed")
 | |
|         end_at = time.perf_counter()
 | |
|         logging.info(
 | |
|             click.style(
 | |
|                 "Segment batch created job: {} latency: {}".format(job_id, end_at - start_at),
 | |
|                 fg="green",
 | |
|             )
 | |
|         )
 | |
|     except Exception as e:
 | |
|         logging.exception("Segments batch created index failed")
 | |
|         redis_client.setex(indexing_cache_key, 600, "error")
 | 
