mirror of
				https://github.com/langgenius/dify.git
				synced 2025-11-03 20:33:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1638 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1638 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import datetime
 | 
						|
import json
 | 
						|
import logging
 | 
						|
import random
 | 
						|
import time
 | 
						|
import uuid
 | 
						|
from typing import Optional
 | 
						|
 | 
						|
from flask_login import current_user
 | 
						|
from sqlalchemy import func
 | 
						|
 | 
						|
from configs import dify_config
 | 
						|
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
 | 
						|
from core.model_manager import ModelManager
 | 
						|
from core.model_runtime.entities.model_entities import ModelType
 | 
						|
from core.rag.datasource.keyword.keyword_factory import Keyword
 | 
						|
from core.rag.models.document import Document as RAGDocument
 | 
						|
from core.rag.retrieval.retrival_methods import RetrievalMethod
 | 
						|
from events.dataset_event import dataset_was_deleted
 | 
						|
from events.document_event import document_was_deleted
 | 
						|
from extensions.ext_database import db
 | 
						|
from extensions.ext_redis import redis_client
 | 
						|
from libs import helper
 | 
						|
from models.account import Account, TenantAccountRole
 | 
						|
from models.dataset import (
 | 
						|
    AppDatasetJoin,
 | 
						|
    Dataset,
 | 
						|
    DatasetCollectionBinding,
 | 
						|
    DatasetPermission,
 | 
						|
    DatasetProcessRule,
 | 
						|
    DatasetQuery,
 | 
						|
    Document,
 | 
						|
    DocumentSegment,
 | 
						|
)
 | 
						|
from models.model import UploadFile
 | 
						|
from models.source import DataSourceOauthBinding
 | 
						|
from services.errors.account import NoPermissionError
 | 
						|
from services.errors.dataset import DatasetNameDuplicateError
 | 
						|
from services.errors.document import DocumentIndexingError
 | 
						|
from services.errors.file import FileNotExistsError
 | 
						|
from services.feature_service import FeatureModel, FeatureService
 | 
						|
from services.tag_service import TagService
 | 
						|
from services.vector_service import VectorService
 | 
						|
from tasks.clean_notion_document_task import clean_notion_document_task
 | 
						|
from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
 | 
						|
from tasks.delete_segment_from_index_task import delete_segment_from_index_task
 | 
						|
from tasks.disable_segment_from_index_task import disable_segment_from_index_task
 | 
						|
from tasks.document_indexing_task import document_indexing_task
 | 
						|
from tasks.document_indexing_update_task import document_indexing_update_task
 | 
						|
from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
 | 
						|
from tasks.recover_document_indexing_task import recover_document_indexing_task
 | 
						|
from tasks.retry_document_indexing_task import retry_document_indexing_task
 | 
						|
from tasks.sync_website_document_indexing_task import sync_website_document_indexing_task
 | 
						|
 | 
						|
 | 
						|
class DatasetService:
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None):
 | 
						|
        query = Dataset.query.filter(Dataset.provider == provider, Dataset.tenant_id == tenant_id).order_by(
 | 
						|
            Dataset.created_at.desc()
 | 
						|
        )
 | 
						|
 | 
						|
        if user:
 | 
						|
            # get permitted dataset ids
 | 
						|
            dataset_permission = DatasetPermission.query.filter_by(
 | 
						|
                account_id=user.id,
 | 
						|
                tenant_id=tenant_id
 | 
						|
            ).all()
 | 
						|
            permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None
 | 
						|
 | 
						|
            if user.current_role == TenantAccountRole.DATASET_OPERATOR:
 | 
						|
                # only show datasets that the user has permission to access
 | 
						|
                if permitted_dataset_ids:
 | 
						|
                    query = query.filter(Dataset.id.in_(permitted_dataset_ids))
 | 
						|
                else:
 | 
						|
                    return [], 0
 | 
						|
            else:
 | 
						|
                # show all datasets that the user has permission to access
 | 
						|
                if permitted_dataset_ids:
 | 
						|
                    query = query.filter(
 | 
						|
                        db.or_(
 | 
						|
                            Dataset.permission == 'all_team_members',
 | 
						|
                            db.and_(Dataset.permission == 'only_me', Dataset.created_by == user.id),
 | 
						|
                            db.and_(Dataset.permission == 'partial_members', Dataset.id.in_(permitted_dataset_ids))
 | 
						|
                        )
 | 
						|
                    )
 | 
						|
                else:
 | 
						|
                    query = query.filter(
 | 
						|
                        db.or_(
 | 
						|
                            Dataset.permission == 'all_team_members',
 | 
						|
                            db.and_(Dataset.permission == 'only_me', Dataset.created_by == user.id)
 | 
						|
                        )
 | 
						|
                    )
 | 
						|
        else:
 | 
						|
            # if no user, only show datasets that are shared with all team members
 | 
						|
            query = query.filter(Dataset.permission == 'all_team_members')
 | 
						|
 | 
						|
        if search:
 | 
						|
            query = query.filter(Dataset.name.ilike(f'%{search}%'))
 | 
						|
 | 
						|
        if tag_ids:
 | 
						|
            target_ids = TagService.get_target_ids_by_tag_ids('knowledge', tenant_id, tag_ids)
 | 
						|
            if target_ids:
 | 
						|
                query = query.filter(Dataset.id.in_(target_ids))
 | 
						|
            else:
 | 
						|
                return [], 0
 | 
						|
 | 
						|
        datasets = query.paginate(
 | 
						|
            page=page,
 | 
						|
            per_page=per_page,
 | 
						|
            max_per_page=100,
 | 
						|
            error_out=False
 | 
						|
        )
 | 
						|
 | 
						|
        return datasets.items, datasets.total
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def get_process_rules(dataset_id):
 | 
						|
        # get the latest process rule
 | 
						|
        dataset_process_rule = db.session.query(DatasetProcessRule). \
 | 
						|
            filter(DatasetProcessRule.dataset_id == dataset_id). \
 | 
						|
            order_by(DatasetProcessRule.created_at.desc()). \
 | 
						|
            limit(1). \
 | 
						|
            one_or_none()
 | 
						|
        if dataset_process_rule:
 | 
						|
            mode = dataset_process_rule.mode
 | 
						|
            rules = dataset_process_rule.rules_dict
 | 
						|
        else:
 | 
						|
            mode = DocumentService.DEFAULT_RULES['mode']
 | 
						|
            rules = DocumentService.DEFAULT_RULES['rules']
 | 
						|
        return {
 | 
						|
            'mode': mode,
 | 
						|
            'rules': rules
 | 
						|
        }
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def get_datasets_by_ids(ids, tenant_id):
 | 
						|
        datasets = Dataset.query.filter(
 | 
						|
            Dataset.id.in_(ids),
 | 
						|
            Dataset.tenant_id == tenant_id
 | 
						|
        ).paginate(
 | 
						|
            page=1, per_page=len(ids), max_per_page=len(ids), error_out=False
 | 
						|
        )
 | 
						|
        return datasets.items, datasets.total
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
 | 
						|
        # check if dataset name already exists
 | 
						|
        if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
 | 
						|
            raise DatasetNameDuplicateError(
 | 
						|
                f'Dataset with name {name} already exists.'
 | 
						|
            )
 | 
						|
        embedding_model = None
 | 
						|
        if indexing_technique == 'high_quality':
 | 
						|
            model_manager = ModelManager()
 | 
						|
            embedding_model = model_manager.get_default_model_instance(
 | 
						|
                tenant_id=tenant_id,
 | 
						|
                model_type=ModelType.TEXT_EMBEDDING
 | 
						|
            )
 | 
						|
        dataset = Dataset(name=name, indexing_technique=indexing_technique)
 | 
						|
        # dataset = Dataset(name=name, provider=provider, config=config)
 | 
						|
        dataset.created_by = account.id
 | 
						|
        dataset.updated_by = account.id
 | 
						|
        dataset.tenant_id = tenant_id
 | 
						|
        dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
 | 
						|
        dataset.embedding_model = embedding_model.model if embedding_model else None
 | 
						|
        db.session.add(dataset)
 | 
						|
        db.session.commit()
 | 
						|
        return dataset
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def get_dataset(dataset_id):
 | 
						|
        return Dataset.query.filter_by(
 | 
						|
            id=dataset_id
 | 
						|
        ).first()
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def check_dataset_model_setting(dataset):
 | 
						|
        if dataset.indexing_technique == 'high_quality':
 | 
						|
            try:
 | 
						|
                model_manager = ModelManager()
 | 
						|
                model_manager.get_model_instance(
 | 
						|
                    tenant_id=dataset.tenant_id,
 | 
						|
                    provider=dataset.embedding_model_provider,
 | 
						|
                    model_type=ModelType.TEXT_EMBEDDING,
 | 
						|
                    model=dataset.embedding_model
 | 
						|
                )
 | 
						|
            except LLMBadRequestError:
 | 
						|
                raise ValueError(
 | 
						|
                    "No Embedding Model available. Please configure a valid provider "
 | 
						|
                    "in the Settings -> Model Provider."
 | 
						|
                )
 | 
						|
            except ProviderTokenNotInitError as ex:
 | 
						|
                raise ValueError(
 | 
						|
                    f"The dataset in unavailable, due to: "
 | 
						|
                    f"{ex.description}"
 | 
						|
                )
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def update_dataset(dataset_id, data, user):
 | 
						|
        data.pop('partial_member_list', None)
 | 
						|
        filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
 | 
						|
        dataset = DatasetService.get_dataset(dataset_id)
 | 
						|
        DatasetService.check_dataset_permission(dataset, user)
 | 
						|
        action = None
 | 
						|
        if dataset.indexing_technique != data['indexing_technique']:
 | 
						|
            # if update indexing_technique
 | 
						|
            if data['indexing_technique'] == 'economy':
 | 
						|
                action = 'remove'
 | 
						|
                filtered_data['embedding_model'] = None
 | 
						|
                filtered_data['embedding_model_provider'] = None
 | 
						|
                filtered_data['collection_binding_id'] = None
 | 
						|
            elif data['indexing_technique'] == 'high_quality':
 | 
						|
                action = 'add'
 | 
						|
                # get embedding model setting
 | 
						|
                try:
 | 
						|
                    model_manager = ModelManager()
 | 
						|
                    embedding_model = model_manager.get_model_instance(
 | 
						|
                        tenant_id=current_user.current_tenant_id,
 | 
						|
                        provider=data['embedding_model_provider'],
 | 
						|
                        model_type=ModelType.TEXT_EMBEDDING,
 | 
						|
                        model=data['embedding_model']
 | 
						|
                    )
 | 
						|
                    filtered_data['embedding_model'] = embedding_model.model
 | 
						|
                    filtered_data['embedding_model_provider'] = embedding_model.provider
 | 
						|
                    dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
 | 
						|
                        embedding_model.provider,
 | 
						|
                        embedding_model.model
 | 
						|
                    )
 | 
						|
                    filtered_data['collection_binding_id'] = dataset_collection_binding.id
 | 
						|
                except LLMBadRequestError:
 | 
						|
                    raise ValueError(
 | 
						|
                        "No Embedding Model available. Please configure a valid provider "
 | 
						|
                        "in the Settings -> Model Provider."
 | 
						|
                    )
 | 
						|
                except ProviderTokenNotInitError as ex:
 | 
						|
                    raise ValueError(ex.description)
 | 
						|
        else:
 | 
						|
            if data['embedding_model_provider'] != dataset.embedding_model_provider or \
 | 
						|
                data['embedding_model'] != dataset.embedding_model:
 | 
						|
                action = 'update'
 | 
						|
                try:
 | 
						|
                    model_manager = ModelManager()
 | 
						|
                    embedding_model = model_manager.get_model_instance(
 | 
						|
                        tenant_id=current_user.current_tenant_id,
 | 
						|
                        provider=data['embedding_model_provider'],
 | 
						|
                        model_type=ModelType.TEXT_EMBEDDING,
 | 
						|
                        model=data['embedding_model']
 | 
						|
                    )
 | 
						|
                    filtered_data['embedding_model'] = embedding_model.model
 | 
						|
                    filtered_data['embedding_model_provider'] = embedding_model.provider
 | 
						|
                    dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
 | 
						|
                        embedding_model.provider,
 | 
						|
                        embedding_model.model
 | 
						|
                    )
 | 
						|
                    filtered_data['collection_binding_id'] = dataset_collection_binding.id
 | 
						|
                except LLMBadRequestError:
 | 
						|
                    raise ValueError(
 | 
						|
                        "No Embedding Model available. Please configure a valid provider "
 | 
						|
                        "in the Settings -> Model Provider."
 | 
						|
                    )
 | 
						|
                except ProviderTokenNotInitError as ex:
 | 
						|
                    raise ValueError(ex.description)
 | 
						|
 | 
						|
        filtered_data['updated_by'] = user.id
 | 
						|
        filtered_data['updated_at'] = datetime.datetime.now()
 | 
						|
 | 
						|
        # update Retrieval model
 | 
						|
        filtered_data['retrieval_model'] = data['retrieval_model']
 | 
						|
 | 
						|
        dataset.query.filter_by(id=dataset_id).update(filtered_data)
 | 
						|
 | 
						|
        db.session.commit()
 | 
						|
        if action:
 | 
						|
            deal_dataset_vector_index_task.delay(dataset_id, action)
 | 
						|
        return dataset
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def delete_dataset(dataset_id, user):
 | 
						|
 | 
						|
        dataset = DatasetService.get_dataset(dataset_id)
 | 
						|
 | 
						|
        if dataset is None:
 | 
						|
            return False
 | 
						|
 | 
						|
        DatasetService.check_dataset_permission(dataset, user)
 | 
						|
 | 
						|
        dataset_was_deleted.send(dataset)
 | 
						|
 | 
						|
        db.session.delete(dataset)
 | 
						|
        db.session.commit()
 | 
						|
        return True
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def dataset_use_check(dataset_id) -> bool:
 | 
						|
        count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count()
 | 
						|
        if count > 0:
 | 
						|
            return True
 | 
						|
        return False
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def check_dataset_permission(dataset, user):
 | 
						|
        if dataset.tenant_id != user.current_tenant_id:
 | 
						|
            logging.debug(
 | 
						|
                f'User {user.id} does not have permission to access dataset {dataset.id}'
 | 
						|
            )
 | 
						|
            raise NoPermissionError(
 | 
						|
                'You do not have permission to access this dataset.'
 | 
						|
            )
 | 
						|
        if dataset.permission == 'only_me' and dataset.created_by != user.id:
 | 
						|
            logging.debug(
 | 
						|
                f'User {user.id} does not have permission to access dataset {dataset.id}'
 | 
						|
            )
 | 
						|
            raise NoPermissionError(
 | 
						|
                'You do not have permission to access this dataset.'
 | 
						|
            )
 | 
						|
        if dataset.permission == 'partial_members':
 | 
						|
            user_permission = DatasetPermission.query.filter_by(
 | 
						|
                dataset_id=dataset.id, account_id=user.id
 | 
						|
            ).first()
 | 
						|
            if not user_permission and dataset.tenant_id != user.current_tenant_id and dataset.created_by != user.id:
 | 
						|
                logging.debug(
 | 
						|
                    f'User {user.id} does not have permission to access dataset {dataset.id}'
 | 
						|
                )
 | 
						|
                raise NoPermissionError(
 | 
						|
                    'You do not have permission to access this dataset.'
 | 
						|
                )
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def check_dataset_operator_permission(user: Account = None, dataset: Dataset = None):
 | 
						|
        if dataset.permission == 'only_me':
 | 
						|
            if dataset.created_by != user.id:
 | 
						|
                raise NoPermissionError('You do not have permission to access this dataset.')
 | 
						|
 | 
						|
        elif dataset.permission == 'partial_members':
 | 
						|
            if not any(
 | 
						|
                dp.dataset_id == dataset.id for dp in DatasetPermission.query.filter_by(account_id=user.id).all()
 | 
						|
            ):
 | 
						|
                raise NoPermissionError('You do not have permission to access this dataset.')
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def get_dataset_queries(dataset_id: str, page: int, per_page: int):
 | 
						|
        dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
 | 
						|
            .order_by(db.desc(DatasetQuery.created_at)) \
 | 
						|
            .paginate(
 | 
						|
            page=page, per_page=per_page, max_per_page=100, error_out=False
 | 
						|
        )
 | 
						|
        return dataset_queries.items, dataset_queries.total
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def get_related_apps(dataset_id: str):
 | 
						|
        return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
 | 
						|
            .order_by(db.desc(AppDatasetJoin.created_at)).all()
 | 
						|
 | 
						|
 | 
						|
class DocumentService:
 | 
						|
    DEFAULT_RULES = {
 | 
						|
        'mode': 'custom',
 | 
						|
        'rules': {
 | 
						|
            'pre_processing_rules': [
 | 
						|
                {'id': 'remove_extra_spaces', 'enabled': True},
 | 
						|
                {'id': 'remove_urls_emails', 'enabled': False}
 | 
						|
            ],
 | 
						|
            'segmentation': {
 | 
						|
                'delimiter': '\n',
 | 
						|
                'max_tokens': 500,
 | 
						|
                'chunk_overlap': 50
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    DOCUMENT_METADATA_SCHEMA = {
 | 
						|
        "book": {
 | 
						|
            "title": str,
 | 
						|
            "language": str,
 | 
						|
            "author": str,
 | 
						|
            "publisher": str,
 | 
						|
            "publication_date": str,
 | 
						|
            "isbn": str,
 | 
						|
            "category": str,
 | 
						|
        },
 | 
						|
        "web_page": {
 | 
						|
            "title": str,
 | 
						|
            "url": str,
 | 
						|
            "language": str,
 | 
						|
            "publish_date": str,
 | 
						|
            "author/publisher": str,
 | 
						|
            "topic/keywords": str,
 | 
						|
            "description": str,
 | 
						|
        },
 | 
						|
        "paper": {
 | 
						|
            "title": str,
 | 
						|
            "language": str,
 | 
						|
            "author": str,
 | 
						|
            "publish_date": str,
 | 
						|
            "journal/conference_name": str,
 | 
						|
            "volume/issue/page_numbers": str,
 | 
						|
            "doi": str,
 | 
						|
            "topic/keywords": str,
 | 
						|
            "abstract": str,
 | 
						|
        },
 | 
						|
        "social_media_post": {
 | 
						|
            "platform": str,
 | 
						|
            "author/username": str,
 | 
						|
            "publish_date": str,
 | 
						|
            "post_url": str,
 | 
						|
            "topic/tags": str,
 | 
						|
        },
 | 
						|
        "wikipedia_entry": {
 | 
						|
            "title": str,
 | 
						|
            "language": str,
 | 
						|
            "web_page_url": str,
 | 
						|
            "last_edit_date": str,
 | 
						|
            "editor/contributor": str,
 | 
						|
            "summary/introduction": str,
 | 
						|
        },
 | 
						|
        "personal_document": {
 | 
						|
            "title": str,
 | 
						|
            "author": str,
 | 
						|
            "creation_date": str,
 | 
						|
            "last_modified_date": str,
 | 
						|
            "document_type": str,
 | 
						|
            "tags/category": str,
 | 
						|
        },
 | 
						|
        "business_document": {
 | 
						|
            "title": str,
 | 
						|
            "author": str,
 | 
						|
            "creation_date": str,
 | 
						|
            "last_modified_date": str,
 | 
						|
            "document_type": str,
 | 
						|
            "department/team": str,
 | 
						|
        },
 | 
						|
        "im_chat_log": {
 | 
						|
            "chat_platform": str,
 | 
						|
            "chat_participants/group_name": str,
 | 
						|
            "start_date": str,
 | 
						|
            "end_date": str,
 | 
						|
            "summary": str,
 | 
						|
        },
 | 
						|
        "synced_from_notion": {
 | 
						|
            "title": str,
 | 
						|
            "language": str,
 | 
						|
            "author/creator": str,
 | 
						|
            "creation_date": str,
 | 
						|
            "last_modified_date": str,
 | 
						|
            "notion_page_link": str,
 | 
						|
            "category/tags": str,
 | 
						|
            "description": str,
 | 
						|
        },
 | 
						|
        "synced_from_github": {
 | 
						|
            "repository_name": str,
 | 
						|
            "repository_description": str,
 | 
						|
            "repository_owner/organization": str,
 | 
						|
            "code_filename": str,
 | 
						|
            "code_file_path": str,
 | 
						|
            "programming_language": str,
 | 
						|
            "github_link": str,
 | 
						|
            "open_source_license": str,
 | 
						|
            "commit_date": str,
 | 
						|
            "commit_author": str,
 | 
						|
        },
 | 
						|
        "others": dict
 | 
						|
    }
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
 | 
						|
        document = db.session.query(Document).filter(
 | 
						|
            Document.id == document_id,
 | 
						|
            Document.dataset_id == dataset_id
 | 
						|
        ).first()
 | 
						|
 | 
						|
        return document
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def get_document_by_id(document_id: str) -> Optional[Document]:
 | 
						|
        document = db.session.query(Document).filter(
 | 
						|
            Document.id == document_id
 | 
						|
        ).first()
 | 
						|
 | 
						|
        return document
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
 | 
						|
        documents = db.session.query(Document).filter(
 | 
						|
            Document.dataset_id == dataset_id,
 | 
						|
            Document.enabled == True
 | 
						|
        ).all()
 | 
						|
 | 
						|
        return documents
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
 | 
						|
        documents = db.session.query(Document).filter(
 | 
						|
            Document.dataset_id == dataset_id,
 | 
						|
            Document.indexing_status.in_(['error', 'paused'])
 | 
						|
        ).all()
 | 
						|
        return documents
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
 | 
						|
        documents = db.session.query(Document).filter(
 | 
						|
            Document.batch == batch,
 | 
						|
            Document.dataset_id == dataset_id,
 | 
						|
            Document.tenant_id == current_user.current_tenant_id
 | 
						|
        ).all()
 | 
						|
 | 
						|
        return documents
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def get_document_file_detail(file_id: str):
 | 
						|
        file_detail = db.session.query(UploadFile). \
 | 
						|
            filter(UploadFile.id == file_id). \
 | 
						|
            one_or_none()
 | 
						|
        return file_detail
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def check_archived(document):
 | 
						|
        if document.archived:
 | 
						|
            return True
 | 
						|
        else:
 | 
						|
            return False
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def delete_document(document):
 | 
						|
        # trigger document_was_deleted signal
 | 
						|
        file_id = None
 | 
						|
        if document.data_source_type == 'upload_file':
 | 
						|
            if document.data_source_info:
 | 
						|
                data_source_info = document.data_source_info_dict
 | 
						|
                if data_source_info and 'upload_file_id' in data_source_info:
 | 
						|
                    file_id = data_source_info['upload_file_id']
 | 
						|
        document_was_deleted.send(document.id, dataset_id=document.dataset_id,
 | 
						|
                                  doc_form=document.doc_form, file_id=file_id)
 | 
						|
 | 
						|
        db.session.delete(document)
 | 
						|
        db.session.commit()
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def rename_document(dataset_id: str, document_id: str, name: str) -> Document:
 | 
						|
        dataset = DatasetService.get_dataset(dataset_id)
 | 
						|
        if not dataset:
 | 
						|
            raise ValueError('Dataset not found.')
 | 
						|
 | 
						|
        document = DocumentService.get_document(dataset_id, document_id)
 | 
						|
 | 
						|
        if not document:
 | 
						|
            raise ValueError('Document not found.')
 | 
						|
 | 
						|
        if document.tenant_id != current_user.current_tenant_id:
 | 
						|
            raise ValueError('No permission.')
 | 
						|
 | 
						|
        document.name = name
 | 
						|
 | 
						|
        db.session.add(document)
 | 
						|
        db.session.commit()
 | 
						|
 | 
						|
        return document
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def pause_document(document):
 | 
						|
        if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
 | 
						|
            raise DocumentIndexingError()
 | 
						|
        # update document to be paused
 | 
						|
        document.is_paused = True
 | 
						|
        document.paused_by = current_user.id
 | 
						|
        document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
 | 
						|
        db.session.add(document)
 | 
						|
        db.session.commit()
 | 
						|
        # set document paused flag
 | 
						|
        indexing_cache_key = 'document_{}_is_paused'.format(document.id)
 | 
						|
        redis_client.setnx(indexing_cache_key, "True")
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def recover_document(document):
 | 
						|
        if not document.is_paused:
 | 
						|
            raise DocumentIndexingError()
 | 
						|
        # update document to be recover
 | 
						|
        document.is_paused = False
 | 
						|
        document.paused_by = None
 | 
						|
        document.paused_at = None
 | 
						|
 | 
						|
        db.session.add(document)
 | 
						|
        db.session.commit()
 | 
						|
        # delete paused flag
 | 
						|
        indexing_cache_key = 'document_{}_is_paused'.format(document.id)
 | 
						|
        redis_client.delete(indexing_cache_key)
 | 
						|
        # trigger async task
 | 
						|
        recover_document_indexing_task.delay(document.dataset_id, document.id)
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def retry_document(dataset_id: str, documents: list[Document]):
 | 
						|
        for document in documents:
 | 
						|
            # add retry flag
 | 
						|
            retry_indexing_cache_key = 'document_{}_is_retried'.format(document.id)
 | 
						|
            cache_result = redis_client.get(retry_indexing_cache_key)
 | 
						|
            if cache_result is not None:
 | 
						|
                raise ValueError("Document is being retried, please try again later")
 | 
						|
            # retry document indexing
 | 
						|
            document.indexing_status = 'waiting'
 | 
						|
            db.session.add(document)
 | 
						|
            db.session.commit()
 | 
						|
 | 
						|
            redis_client.setex(retry_indexing_cache_key, 600, 1)
 | 
						|
        # trigger async task
 | 
						|
        document_ids = [document.id for document in documents]
 | 
						|
        retry_document_indexing_task.delay(dataset_id, document_ids)
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def sync_website_document(dataset_id: str, document: Document):
 | 
						|
        # add sync flag
 | 
						|
        sync_indexing_cache_key = 'document_{}_is_sync'.format(document.id)
 | 
						|
        cache_result = redis_client.get(sync_indexing_cache_key)
 | 
						|
        if cache_result is not None:
 | 
						|
            raise ValueError("Document is being synced, please try again later")
 | 
						|
        # sync document indexing
 | 
						|
        document.indexing_status = 'waiting'
 | 
						|
        data_source_info = document.data_source_info_dict
 | 
						|
        data_source_info['mode'] = 'scrape'
 | 
						|
        document.data_source_info = json.dumps(data_source_info, ensure_ascii=False)
 | 
						|
        db.session.add(document)
 | 
						|
        db.session.commit()
 | 
						|
 | 
						|
        redis_client.setex(sync_indexing_cache_key, 600, 1)
 | 
						|
 | 
						|
        sync_website_document_indexing_task.delay(dataset_id, document.id)
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def get_documents_position(dataset_id):
 | 
						|
        document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
 | 
						|
        if document:
 | 
						|
            return document.position + 1
 | 
						|
        else:
 | 
						|
            return 1
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def save_document_with_dataset_id(
 | 
						|
        dataset: Dataset, document_data: dict,
 | 
						|
        account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
 | 
						|
        created_from: str = 'web'
 | 
						|
    ):
 | 
						|
 | 
						|
        # check document limit
 | 
						|
        features = FeatureService.get_features(current_user.current_tenant_id)
 | 
						|
 | 
						|
        if features.billing.enabled:
 | 
						|
            if 'original_document_id' not in document_data or not document_data['original_document_id']:
 | 
						|
                count = 0
 | 
						|
                if document_data["data_source"]["type"] == "upload_file":
 | 
						|
                    upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
 | 
						|
                    count = len(upload_file_list)
 | 
						|
                elif document_data["data_source"]["type"] == "notion_import":
 | 
						|
                    notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
 | 
						|
                    for notion_info in notion_info_list:
 | 
						|
                        count = count + len(notion_info['pages'])
 | 
						|
                elif document_data["data_source"]["type"] == "website_crawl":
 | 
						|
                    website_info = document_data["data_source"]['info_list']['website_info_list']
 | 
						|
                    count = len(website_info['urls'])
 | 
						|
                batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
 | 
						|
                if count > batch_upload_limit:
 | 
						|
                    raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
 | 
						|
 | 
						|
                DocumentService.check_documents_upload_quota(count, features)
 | 
						|
 | 
						|
        # if dataset is empty, update dataset data_source_type
 | 
						|
        if not dataset.data_source_type:
 | 
						|
            dataset.data_source_type = document_data["data_source"]["type"]
 | 
						|
 | 
						|
        if not dataset.indexing_technique:
 | 
						|
            if 'indexing_technique' not in document_data \
 | 
						|
                or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
 | 
						|
                raise ValueError("Indexing technique is required")
 | 
						|
 | 
						|
            dataset.indexing_technique = document_data["indexing_technique"]
 | 
						|
            if document_data["indexing_technique"] == 'high_quality':
 | 
						|
                model_manager = ModelManager()
 | 
						|
                embedding_model = model_manager.get_default_model_instance(
 | 
						|
                    tenant_id=current_user.current_tenant_id,
 | 
						|
                    model_type=ModelType.TEXT_EMBEDDING
 | 
						|
                )
 | 
						|
                dataset.embedding_model = embedding_model.model
 | 
						|
                dataset.embedding_model_provider = embedding_model.provider
 | 
						|
                dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
 | 
						|
                    embedding_model.provider,
 | 
						|
                    embedding_model.model
 | 
						|
                )
 | 
						|
                dataset.collection_binding_id = dataset_collection_binding.id
 | 
						|
                if not dataset.retrieval_model:
 | 
						|
                    default_retrieval_model = {
 | 
						|
                        'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
 | 
						|
                        'reranking_enable': False,
 | 
						|
                        'reranking_model': {
 | 
						|
                            'reranking_provider_name': '',
 | 
						|
                            'reranking_model_name': ''
 | 
						|
                        },
 | 
						|
                        'top_k': 2,
 | 
						|
                        'score_threshold_enabled': False
 | 
						|
                    }
 | 
						|
 | 
						|
                    dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
 | 
						|
                        'retrieval_model'
 | 
						|
                    ) else default_retrieval_model
 | 
						|
 | 
						|
        documents = []
 | 
						|
        batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
 | 
						|
        if document_data.get("original_document_id"):
 | 
						|
            document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
 | 
						|
            documents.append(document)
 | 
						|
        else:
 | 
						|
            # save process rule
 | 
						|
            if not dataset_process_rule:
 | 
						|
                process_rule = document_data["process_rule"]
 | 
						|
                if process_rule["mode"] == "custom":
 | 
						|
                    dataset_process_rule = DatasetProcessRule(
 | 
						|
                        dataset_id=dataset.id,
 | 
						|
                        mode=process_rule["mode"],
 | 
						|
                        rules=json.dumps(process_rule["rules"]),
 | 
						|
                        created_by=account.id
 | 
						|
                    )
 | 
						|
                elif process_rule["mode"] == "automatic":
 | 
						|
                    dataset_process_rule = DatasetProcessRule(
 | 
						|
                        dataset_id=dataset.id,
 | 
						|
                        mode=process_rule["mode"],
 | 
						|
                        rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
 | 
						|
                        created_by=account.id
 | 
						|
                    )
 | 
						|
                db.session.add(dataset_process_rule)
 | 
						|
                db.session.commit()
 | 
						|
            position = DocumentService.get_documents_position(dataset.id)
 | 
						|
            document_ids = []
 | 
						|
            duplicate_document_ids = []
 | 
						|
            if document_data["data_source"]["type"] == "upload_file":
 | 
						|
                upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
 | 
						|
                for file_id in upload_file_list:
 | 
						|
                    file = db.session.query(UploadFile).filter(
 | 
						|
                        UploadFile.tenant_id == dataset.tenant_id,
 | 
						|
                        UploadFile.id == file_id
 | 
						|
                    ).first()
 | 
						|
 | 
						|
                    # raise error if file not found
 | 
						|
                    if not file:
 | 
						|
                        raise FileNotExistsError()
 | 
						|
 | 
						|
                    file_name = file.name
 | 
						|
                    data_source_info = {
 | 
						|
                        "upload_file_id": file_id,
 | 
						|
                    }
 | 
						|
                    # check duplicate
 | 
						|
                    if document_data.get('duplicate', False):
 | 
						|
                        document = Document.query.filter_by(
 | 
						|
                            dataset_id=dataset.id,
 | 
						|
                            tenant_id=current_user.current_tenant_id,
 | 
						|
                            data_source_type='upload_file',
 | 
						|
                            enabled=True,
 | 
						|
                            name=file_name
 | 
						|
                        ).first()
 | 
						|
                        if document:
 | 
						|
                            document.dataset_process_rule_id = dataset_process_rule.id
 | 
						|
                            document.updated_at = datetime.datetime.utcnow()
 | 
						|
                            document.created_from = created_from
 | 
						|
                            document.doc_form = document_data['doc_form']
 | 
						|
                            document.doc_language = document_data['doc_language']
 | 
						|
                            document.data_source_info = json.dumps(data_source_info)
 | 
						|
                            document.batch = batch
 | 
						|
                            document.indexing_status = 'waiting'
 | 
						|
                            db.session.add(document)
 | 
						|
                            documents.append(document)
 | 
						|
                            duplicate_document_ids.append(document.id)
 | 
						|
                            continue
 | 
						|
                    document = DocumentService.build_document(
 | 
						|
                        dataset, dataset_process_rule.id,
 | 
						|
                        document_data["data_source"]["type"],
 | 
						|
                        document_data["doc_form"],
 | 
						|
                        document_data["doc_language"],
 | 
						|
                        data_source_info, created_from, position,
 | 
						|
                        account, file_name, batch
 | 
						|
                    )
 | 
						|
                    db.session.add(document)
 | 
						|
                    db.session.flush()
 | 
						|
                    document_ids.append(document.id)
 | 
						|
                    documents.append(document)
 | 
						|
                    position += 1
 | 
						|
            elif document_data["data_source"]["type"] == "notion_import":
 | 
						|
                notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
 | 
						|
                exist_page_ids = []
 | 
						|
                exist_document = {}
 | 
						|
                documents = Document.query.filter_by(
 | 
						|
                    dataset_id=dataset.id,
 | 
						|
                    tenant_id=current_user.current_tenant_id,
 | 
						|
                    data_source_type='notion_import',
 | 
						|
                    enabled=True
 | 
						|
                ).all()
 | 
						|
                if documents:
 | 
						|
                    for document in documents:
 | 
						|
                        data_source_info = json.loads(document.data_source_info)
 | 
						|
                        exist_page_ids.append(data_source_info['notion_page_id'])
 | 
						|
                        exist_document[data_source_info['notion_page_id']] = document.id
 | 
						|
                for notion_info in notion_info_list:
 | 
						|
                    workspace_id = notion_info['workspace_id']
 | 
						|
                    data_source_binding = DataSourceOauthBinding.query.filter(
 | 
						|
                        db.and_(
 | 
						|
                            DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
 | 
						|
                            DataSourceOauthBinding.provider == 'notion',
 | 
						|
                            DataSourceOauthBinding.disabled == False,
 | 
						|
                            DataSourceOauthBinding.source_info['workspace_id'] == f'"{workspace_id}"'
 | 
						|
                        )
 | 
						|
                    ).first()
 | 
						|
                    if not data_source_binding:
 | 
						|
                        raise ValueError('Data source binding not found.')
 | 
						|
                    for page in notion_info['pages']:
 | 
						|
                        if page['page_id'] not in exist_page_ids:
 | 
						|
                            data_source_info = {
 | 
						|
                                "notion_workspace_id": workspace_id,
 | 
						|
                                "notion_page_id": page['page_id'],
 | 
						|
                                "notion_page_icon": page['page_icon'],
 | 
						|
                                "type": page['type']
 | 
						|
                            }
 | 
						|
                            document = DocumentService.build_document(
 | 
						|
                                dataset, dataset_process_rule.id,
 | 
						|
                                document_data["data_source"]["type"],
 | 
						|
                                document_data["doc_form"],
 | 
						|
                                document_data["doc_language"],
 | 
						|
                                data_source_info, created_from, position,
 | 
						|
                                account, page['page_name'], batch
 | 
						|
                            )
 | 
						|
                            db.session.add(document)
 | 
						|
                            db.session.flush()
 | 
						|
                            document_ids.append(document.id)
 | 
						|
                            documents.append(document)
 | 
						|
                            position += 1
 | 
						|
                        else:
 | 
						|
                            exist_document.pop(page['page_id'])
 | 
						|
                # delete not selected documents
 | 
						|
                if len(exist_document) > 0:
 | 
						|
                    clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
 | 
						|
            elif document_data["data_source"]["type"] == "website_crawl":
 | 
						|
                website_info = document_data["data_source"]['info_list']['website_info_list']
 | 
						|
                urls = website_info['urls']
 | 
						|
                for url in urls:
 | 
						|
                    data_source_info = {
 | 
						|
                        'url': url,
 | 
						|
                        'provider': website_info['provider'],
 | 
						|
                        'job_id': website_info['job_id'],
 | 
						|
                        'only_main_content': website_info.get('only_main_content', False),
 | 
						|
                        'mode': 'crawl',
 | 
						|
                    }
 | 
						|
                    if len(url) > 255:
 | 
						|
                        document_name = url[:200] + '...'
 | 
						|
                    else:
 | 
						|
                        document_name = url
 | 
						|
                    document = DocumentService.build_document(
 | 
						|
                        dataset, dataset_process_rule.id,
 | 
						|
                        document_data["data_source"]["type"],
 | 
						|
                        document_data["doc_form"],
 | 
						|
                        document_data["doc_language"],
 | 
						|
                        data_source_info, created_from, position,
 | 
						|
                        account, document_name, batch
 | 
						|
                    )
 | 
						|
                    db.session.add(document)
 | 
						|
                    db.session.flush()
 | 
						|
                    document_ids.append(document.id)
 | 
						|
                    documents.append(document)
 | 
						|
                    position += 1
 | 
						|
            db.session.commit()
 | 
						|
 | 
						|
            # trigger async task
 | 
						|
            if document_ids:
 | 
						|
                document_indexing_task.delay(dataset.id, document_ids)
 | 
						|
            if duplicate_document_ids:
 | 
						|
                duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
 | 
						|
 | 
						|
        return documents, batch
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def check_documents_upload_quota(count: int, features: FeatureModel):
 | 
						|
        can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
 | 
						|
        if count > can_upload_size:
 | 
						|
            raise ValueError(
 | 
						|
                f'You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded.'
 | 
						|
            )
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def build_document(
 | 
						|
        dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
 | 
						|
        document_language: str, data_source_info: dict, created_from: str, position: int,
 | 
						|
        account: Account,
 | 
						|
        name: str, batch: str
 | 
						|
    ):
 | 
						|
        document = Document(
 | 
						|
            tenant_id=dataset.tenant_id,
 | 
						|
            dataset_id=dataset.id,
 | 
						|
            position=position,
 | 
						|
            data_source_type=data_source_type,
 | 
						|
            data_source_info=json.dumps(data_source_info),
 | 
						|
            dataset_process_rule_id=process_rule_id,
 | 
						|
            batch=batch,
 | 
						|
            name=name,
 | 
						|
            created_from=created_from,
 | 
						|
            created_by=account.id,
 | 
						|
            doc_form=document_form,
 | 
						|
            doc_language=document_language
 | 
						|
        )
 | 
						|
        return document
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def get_tenant_documents_count():
 | 
						|
        documents_count = Document.query.filter(
 | 
						|
            Document.completed_at.isnot(None),
 | 
						|
            Document.enabled == True,
 | 
						|
            Document.archived == False,
 | 
						|
            Document.tenant_id == current_user.current_tenant_id
 | 
						|
        ).count()
 | 
						|
        return documents_count
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def update_document_with_dataset_id(
 | 
						|
        dataset: Dataset, document_data: dict,
 | 
						|
        account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
 | 
						|
        created_from: str = 'web'
 | 
						|
    ):
 | 
						|
        DatasetService.check_dataset_model_setting(dataset)
 | 
						|
        document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
 | 
						|
        if document.display_status != 'available':
 | 
						|
            raise ValueError("Document is not available")
 | 
						|
        # update document name
 | 
						|
        if document_data.get('name'):
 | 
						|
            document.name = document_data['name']
 | 
						|
        # save process rule
 | 
						|
        if document_data.get('process_rule'):
 | 
						|
            process_rule = document_data["process_rule"]
 | 
						|
            if process_rule["mode"] == "custom":
 | 
						|
                dataset_process_rule = DatasetProcessRule(
 | 
						|
                    dataset_id=dataset.id,
 | 
						|
                    mode=process_rule["mode"],
 | 
						|
                    rules=json.dumps(process_rule["rules"]),
 | 
						|
                    created_by=account.id
 | 
						|
                )
 | 
						|
            elif process_rule["mode"] == "automatic":
 | 
						|
                dataset_process_rule = DatasetProcessRule(
 | 
						|
                    dataset_id=dataset.id,
 | 
						|
                    mode=process_rule["mode"],
 | 
						|
                    rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
 | 
						|
                    created_by=account.id
 | 
						|
                )
 | 
						|
            db.session.add(dataset_process_rule)
 | 
						|
            db.session.commit()
 | 
						|
            document.dataset_process_rule_id = dataset_process_rule.id
 | 
						|
        # update document data source
 | 
						|
        if document_data.get('data_source'):
 | 
						|
            file_name = ''
 | 
						|
            data_source_info = {}
 | 
						|
            if document_data["data_source"]["type"] == "upload_file":
 | 
						|
                upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
 | 
						|
                for file_id in upload_file_list:
 | 
						|
                    file = db.session.query(UploadFile).filter(
 | 
						|
                        UploadFile.tenant_id == dataset.tenant_id,
 | 
						|
                        UploadFile.id == file_id
 | 
						|
                    ).first()
 | 
						|
 | 
						|
                    # raise error if file not found
 | 
						|
                    if not file:
 | 
						|
                        raise FileNotExistsError()
 | 
						|
 | 
						|
                    file_name = file.name
 | 
						|
                    data_source_info = {
 | 
						|
                        "upload_file_id": file_id,
 | 
						|
                    }
 | 
						|
            elif document_data["data_source"]["type"] == "notion_import":
 | 
						|
                notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
 | 
						|
                for notion_info in notion_info_list:
 | 
						|
                    workspace_id = notion_info['workspace_id']
 | 
						|
                    data_source_binding = DataSourceOauthBinding.query.filter(
 | 
						|
                        db.and_(
 | 
						|
                            DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
 | 
						|
                            DataSourceOauthBinding.provider == 'notion',
 | 
						|
                            DataSourceOauthBinding.disabled == False,
 | 
						|
                            DataSourceOauthBinding.source_info['workspace_id'] == f'"{workspace_id}"'
 | 
						|
                        )
 | 
						|
                    ).first()
 | 
						|
                    if not data_source_binding:
 | 
						|
                        raise ValueError('Data source binding not found.')
 | 
						|
                    for page in notion_info['pages']:
 | 
						|
                        data_source_info = {
 | 
						|
                            "notion_workspace_id": workspace_id,
 | 
						|
                            "notion_page_id": page['page_id'],
 | 
						|
                            "notion_page_icon": page['page_icon'],
 | 
						|
                            "type": page['type']
 | 
						|
                        }
 | 
						|
            elif document_data["data_source"]["type"] == "website_crawl":
 | 
						|
                website_info = document_data["data_source"]['info_list']['website_info_list']
 | 
						|
                urls = website_info['urls']
 | 
						|
                for url in urls:
 | 
						|
                    data_source_info = {
 | 
						|
                        'url': url,
 | 
						|
                        'provider': website_info['provider'],
 | 
						|
                        'job_id': website_info['job_id'],
 | 
						|
                        'only_main_content': website_info.get('only_main_content', False),
 | 
						|
                        'mode': 'crawl',
 | 
						|
                    }
 | 
						|
            document.data_source_type = document_data["data_source"]["type"]
 | 
						|
            document.data_source_info = json.dumps(data_source_info)
 | 
						|
            document.name = file_name
 | 
						|
        # update document to be waiting
 | 
						|
        document.indexing_status = 'waiting'
 | 
						|
        document.completed_at = None
 | 
						|
        document.processing_started_at = None
 | 
						|
        document.parsing_completed_at = None
 | 
						|
        document.cleaning_completed_at = None
 | 
						|
        document.splitting_completed_at = None
 | 
						|
        document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
        document.created_from = created_from
 | 
						|
        document.doc_form = document_data['doc_form']
 | 
						|
        db.session.add(document)
 | 
						|
        db.session.commit()
 | 
						|
        # update document segment
 | 
						|
        update_params = {
 | 
						|
            DocumentSegment.status: 're_segment'
 | 
						|
        }
 | 
						|
        DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
 | 
						|
        db.session.commit()
 | 
						|
        # trigger async task
 | 
						|
        document_indexing_update_task.delay(document.dataset_id, document.id)
 | 
						|
        return document
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
 | 
						|
        features = FeatureService.get_features(current_user.current_tenant_id)
 | 
						|
 | 
						|
        if features.billing.enabled:
 | 
						|
            count = 0
 | 
						|
            if document_data["data_source"]["type"] == "upload_file":
 | 
						|
                upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
 | 
						|
                count = len(upload_file_list)
 | 
						|
            elif document_data["data_source"]["type"] == "notion_import":
 | 
						|
                notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
 | 
						|
                for notion_info in notion_info_list:
 | 
						|
                    count = count + len(notion_info['pages'])
 | 
						|
            elif document_data["data_source"]["type"] == "website_crawl":
 | 
						|
                website_info = document_data["data_source"]['info_list']['website_info_list']
 | 
						|
                count = len(website_info['urls'])
 | 
						|
            batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
 | 
						|
            if count > batch_upload_limit:
 | 
						|
                raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
 | 
						|
 | 
						|
            DocumentService.check_documents_upload_quota(count, features)
 | 
						|
 | 
						|
        embedding_model = None
 | 
						|
        dataset_collection_binding_id = None
 | 
						|
        retrieval_model = None
 | 
						|
        if document_data['indexing_technique'] == 'high_quality':
 | 
						|
            model_manager = ModelManager()
 | 
						|
            embedding_model = model_manager.get_default_model_instance(
 | 
						|
                tenant_id=current_user.current_tenant_id,
 | 
						|
                model_type=ModelType.TEXT_EMBEDDING
 | 
						|
            )
 | 
						|
            dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
 | 
						|
                embedding_model.provider,
 | 
						|
                embedding_model.model
 | 
						|
            )
 | 
						|
            dataset_collection_binding_id = dataset_collection_binding.id
 | 
						|
            if document_data.get('retrieval_model'):
 | 
						|
                retrieval_model = document_data['retrieval_model']
 | 
						|
            else:
 | 
						|
                default_retrieval_model = {
 | 
						|
                    'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
 | 
						|
                    'reranking_enable': False,
 | 
						|
                    'reranking_model': {
 | 
						|
                        'reranking_provider_name': '',
 | 
						|
                        'reranking_model_name': ''
 | 
						|
                    },
 | 
						|
                    'top_k': 2,
 | 
						|
                    'score_threshold_enabled': False
 | 
						|
                }
 | 
						|
                retrieval_model = default_retrieval_model
 | 
						|
        # save dataset
 | 
						|
        dataset = Dataset(
 | 
						|
            tenant_id=tenant_id,
 | 
						|
            name='',
 | 
						|
            data_source_type=document_data["data_source"]["type"],
 | 
						|
            indexing_technique=document_data["indexing_technique"],
 | 
						|
            created_by=account.id,
 | 
						|
            embedding_model=embedding_model.model if embedding_model else None,
 | 
						|
            embedding_model_provider=embedding_model.provider if embedding_model else None,
 | 
						|
            collection_binding_id=dataset_collection_binding_id,
 | 
						|
            retrieval_model=retrieval_model
 | 
						|
        )
 | 
						|
 | 
						|
        db.session.add(dataset)
 | 
						|
        db.session.flush()
 | 
						|
 | 
						|
        documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
 | 
						|
 | 
						|
        cut_length = 18
 | 
						|
        cut_name = documents[0].name[:cut_length]
 | 
						|
        dataset.name = cut_name + '...'
 | 
						|
        dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
 | 
						|
        db.session.commit()
 | 
						|
 | 
						|
        return dataset, documents, batch
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def document_create_args_validate(cls, args: dict):
 | 
						|
        if 'original_document_id' not in args or not args['original_document_id']:
 | 
						|
            DocumentService.data_source_args_validate(args)
 | 
						|
            DocumentService.process_rule_args_validate(args)
 | 
						|
        else:
 | 
						|
            if ('data_source' not in args and not args['data_source']) \
 | 
						|
                and ('process_rule' not in args and not args['process_rule']):
 | 
						|
                raise ValueError("Data source or Process rule is required")
 | 
						|
            else:
 | 
						|
                if args.get('data_source'):
 | 
						|
                    DocumentService.data_source_args_validate(args)
 | 
						|
                if args.get('process_rule'):
 | 
						|
                    DocumentService.process_rule_args_validate(args)
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def data_source_args_validate(cls, args: dict):
 | 
						|
        if 'data_source' not in args or not args['data_source']:
 | 
						|
            raise ValueError("Data source is required")
 | 
						|
 | 
						|
        if not isinstance(args['data_source'], dict):
 | 
						|
            raise ValueError("Data source is invalid")
 | 
						|
 | 
						|
        if 'type' not in args['data_source'] or not args['data_source']['type']:
 | 
						|
            raise ValueError("Data source type is required")
 | 
						|
 | 
						|
        if args['data_source']['type'] not in Document.DATA_SOURCES:
 | 
						|
            raise ValueError("Data source type is invalid")
 | 
						|
 | 
						|
        if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
 | 
						|
            raise ValueError("Data source info is required")
 | 
						|
 | 
						|
        if args['data_source']['type'] == 'upload_file':
 | 
						|
            if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
 | 
						|
                'file_info_list']:
 | 
						|
                raise ValueError("File source info is required")
 | 
						|
        if args['data_source']['type'] == 'notion_import':
 | 
						|
            if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
 | 
						|
                'notion_info_list']:
 | 
						|
                raise ValueError("Notion source info is required")
 | 
						|
        if args['data_source']['type'] == 'website_crawl':
 | 
						|
            if 'website_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
 | 
						|
                'website_info_list']:
 | 
						|
                raise ValueError("Website source info is required")
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def process_rule_args_validate(cls, args: dict):
 | 
						|
        if 'process_rule' not in args or not args['process_rule']:
 | 
						|
            raise ValueError("Process rule is required")
 | 
						|
 | 
						|
        if not isinstance(args['process_rule'], dict):
 | 
						|
            raise ValueError("Process rule is invalid")
 | 
						|
 | 
						|
        if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
 | 
						|
            raise ValueError("Process rule mode is required")
 | 
						|
 | 
						|
        if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
 | 
						|
            raise ValueError("Process rule mode is invalid")
 | 
						|
 | 
						|
        if args['process_rule']['mode'] == 'automatic':
 | 
						|
            args['process_rule']['rules'] = {}
 | 
						|
        else:
 | 
						|
            if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
 | 
						|
                raise ValueError("Process rule rules is required")
 | 
						|
 | 
						|
            if not isinstance(args['process_rule']['rules'], dict):
 | 
						|
                raise ValueError("Process rule rules is invalid")
 | 
						|
 | 
						|
            if 'pre_processing_rules' not in args['process_rule']['rules'] \
 | 
						|
                or args['process_rule']['rules']['pre_processing_rules'] is None:
 | 
						|
                raise ValueError("Process rule pre_processing_rules is required")
 | 
						|
 | 
						|
            if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
 | 
						|
                raise ValueError("Process rule pre_processing_rules is invalid")
 | 
						|
 | 
						|
            unique_pre_processing_rule_dicts = {}
 | 
						|
            for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
 | 
						|
                if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
 | 
						|
                    raise ValueError("Process rule pre_processing_rules id is required")
 | 
						|
 | 
						|
                if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
 | 
						|
                    raise ValueError("Process rule pre_processing_rules id is invalid")
 | 
						|
 | 
						|
                if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
 | 
						|
                    raise ValueError("Process rule pre_processing_rules enabled is required")
 | 
						|
 | 
						|
                if not isinstance(pre_processing_rule['enabled'], bool):
 | 
						|
                    raise ValueError("Process rule pre_processing_rules enabled is invalid")
 | 
						|
 | 
						|
                unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
 | 
						|
 | 
						|
            args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
 | 
						|
 | 
						|
            if 'segmentation' not in args['process_rule']['rules'] \
 | 
						|
                or args['process_rule']['rules']['segmentation'] is None:
 | 
						|
                raise ValueError("Process rule segmentation is required")
 | 
						|
 | 
						|
            if not isinstance(args['process_rule']['rules']['segmentation'], dict):
 | 
						|
                raise ValueError("Process rule segmentation is invalid")
 | 
						|
 | 
						|
            if 'separator' not in args['process_rule']['rules']['segmentation'] \
 | 
						|
                or not args['process_rule']['rules']['segmentation']['separator']:
 | 
						|
                raise ValueError("Process rule segmentation separator is required")
 | 
						|
 | 
						|
            if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
 | 
						|
                raise ValueError("Process rule segmentation separator is invalid")
 | 
						|
 | 
						|
            if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
 | 
						|
                or not args['process_rule']['rules']['segmentation']['max_tokens']:
 | 
						|
                raise ValueError("Process rule segmentation max_tokens is required")
 | 
						|
 | 
						|
            if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
 | 
						|
                raise ValueError("Process rule segmentation max_tokens is invalid")
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def estimate_args_validate(cls, args: dict):
 | 
						|
        if 'info_list' not in args or not args['info_list']:
 | 
						|
            raise ValueError("Data source info is required")
 | 
						|
 | 
						|
        if not isinstance(args['info_list'], dict):
 | 
						|
            raise ValueError("Data info is invalid")
 | 
						|
 | 
						|
        if 'process_rule' not in args or not args['process_rule']:
 | 
						|
            raise ValueError("Process rule is required")
 | 
						|
 | 
						|
        if not isinstance(args['process_rule'], dict):
 | 
						|
            raise ValueError("Process rule is invalid")
 | 
						|
 | 
						|
        if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
 | 
						|
            raise ValueError("Process rule mode is required")
 | 
						|
 | 
						|
        if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
 | 
						|
            raise ValueError("Process rule mode is invalid")
 | 
						|
 | 
						|
        if args['process_rule']['mode'] == 'automatic':
 | 
						|
            args['process_rule']['rules'] = {}
 | 
						|
        else:
 | 
						|
            if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
 | 
						|
                raise ValueError("Process rule rules is required")
 | 
						|
 | 
						|
            if not isinstance(args['process_rule']['rules'], dict):
 | 
						|
                raise ValueError("Process rule rules is invalid")
 | 
						|
 | 
						|
            if 'pre_processing_rules' not in args['process_rule']['rules'] \
 | 
						|
                or args['process_rule']['rules']['pre_processing_rules'] is None:
 | 
						|
                raise ValueError("Process rule pre_processing_rules is required")
 | 
						|
 | 
						|
            if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
 | 
						|
                raise ValueError("Process rule pre_processing_rules is invalid")
 | 
						|
 | 
						|
            unique_pre_processing_rule_dicts = {}
 | 
						|
            for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
 | 
						|
                if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
 | 
						|
                    raise ValueError("Process rule pre_processing_rules id is required")
 | 
						|
 | 
						|
                if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
 | 
						|
                    raise ValueError("Process rule pre_processing_rules id is invalid")
 | 
						|
 | 
						|
                if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
 | 
						|
                    raise ValueError("Process rule pre_processing_rules enabled is required")
 | 
						|
 | 
						|
                if not isinstance(pre_processing_rule['enabled'], bool):
 | 
						|
                    raise ValueError("Process rule pre_processing_rules enabled is invalid")
 | 
						|
 | 
						|
                unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
 | 
						|
 | 
						|
            args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
 | 
						|
 | 
						|
            if 'segmentation' not in args['process_rule']['rules'] \
 | 
						|
                or args['process_rule']['rules']['segmentation'] is None:
 | 
						|
                raise ValueError("Process rule segmentation is required")
 | 
						|
 | 
						|
            if not isinstance(args['process_rule']['rules']['segmentation'], dict):
 | 
						|
                raise ValueError("Process rule segmentation is invalid")
 | 
						|
 | 
						|
            if 'separator' not in args['process_rule']['rules']['segmentation'] \
 | 
						|
                or not args['process_rule']['rules']['segmentation']['separator']:
 | 
						|
                raise ValueError("Process rule segmentation separator is required")
 | 
						|
 | 
						|
            if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
 | 
						|
                raise ValueError("Process rule segmentation separator is invalid")
 | 
						|
 | 
						|
            if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
 | 
						|
                or not args['process_rule']['rules']['segmentation']['max_tokens']:
 | 
						|
                raise ValueError("Process rule segmentation max_tokens is required")
 | 
						|
 | 
						|
            if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
 | 
						|
                raise ValueError("Process rule segmentation max_tokens is invalid")
 | 
						|
 | 
						|
 | 
						|
class SegmentService:
 | 
						|
    @classmethod
 | 
						|
    def segment_create_args_validate(cls, args: dict, document: Document):
 | 
						|
        if document.doc_form == 'qa_model':
 | 
						|
            if 'answer' not in args or not args['answer']:
 | 
						|
                raise ValueError("Answer is required")
 | 
						|
            if not args['answer'].strip():
 | 
						|
                raise ValueError("Answer is empty")
 | 
						|
        if 'content' not in args or not args['content'] or not args['content'].strip():
 | 
						|
            raise ValueError("Content is empty")
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def create_segment(cls, args: dict, document: Document, dataset: Dataset):
 | 
						|
        content = args['content']
 | 
						|
        doc_id = str(uuid.uuid4())
 | 
						|
        segment_hash = helper.generate_text_hash(content)
 | 
						|
        tokens = 0
 | 
						|
        if dataset.indexing_technique == 'high_quality':
 | 
						|
            model_manager = ModelManager()
 | 
						|
            embedding_model = model_manager.get_model_instance(
 | 
						|
                tenant_id=current_user.current_tenant_id,
 | 
						|
                provider=dataset.embedding_model_provider,
 | 
						|
                model_type=ModelType.TEXT_EMBEDDING,
 | 
						|
                model=dataset.embedding_model
 | 
						|
            )
 | 
						|
            # calc embedding use tokens
 | 
						|
            tokens = embedding_model.get_text_embedding_num_tokens(
 | 
						|
                texts=[content]
 | 
						|
            )
 | 
						|
        lock_name = 'add_segment_lock_document_id_{}'.format(document.id)
 | 
						|
        with redis_client.lock(lock_name, timeout=600):
 | 
						|
            max_position = db.session.query(func.max(DocumentSegment.position)).filter(
 | 
						|
                DocumentSegment.document_id == document.id
 | 
						|
            ).scalar()
 | 
						|
            segment_document = DocumentSegment(
 | 
						|
                tenant_id=current_user.current_tenant_id,
 | 
						|
                dataset_id=document.dataset_id,
 | 
						|
                document_id=document.id,
 | 
						|
                index_node_id=doc_id,
 | 
						|
                index_node_hash=segment_hash,
 | 
						|
                position=max_position + 1 if max_position else 1,
 | 
						|
                content=content,
 | 
						|
                word_count=len(content),
 | 
						|
                tokens=tokens,
 | 
						|
                status='completed',
 | 
						|
                indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
 | 
						|
                completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
 | 
						|
                created_by=current_user.id
 | 
						|
            )
 | 
						|
            if document.doc_form == 'qa_model':
 | 
						|
                segment_document.answer = args['answer']
 | 
						|
 | 
						|
            db.session.add(segment_document)
 | 
						|
            db.session.commit()
 | 
						|
 | 
						|
            # save vector index
 | 
						|
            try:
 | 
						|
                VectorService.create_segments_vector([args['keywords']], [segment_document], dataset)
 | 
						|
            except Exception as e:
 | 
						|
                logging.exception("create segment index failed")
 | 
						|
                segment_document.enabled = False
 | 
						|
                segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
                segment_document.status = 'error'
 | 
						|
                segment_document.error = str(e)
 | 
						|
                db.session.commit()
 | 
						|
            segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
 | 
						|
            return segment
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
 | 
						|
        lock_name = 'multi_add_segment_lock_document_id_{}'.format(document.id)
 | 
						|
        with redis_client.lock(lock_name, timeout=600):
 | 
						|
            embedding_model = None
 | 
						|
            if dataset.indexing_technique == 'high_quality':
 | 
						|
                model_manager = ModelManager()
 | 
						|
                embedding_model = model_manager.get_model_instance(
 | 
						|
                    tenant_id=current_user.current_tenant_id,
 | 
						|
                    provider=dataset.embedding_model_provider,
 | 
						|
                    model_type=ModelType.TEXT_EMBEDDING,
 | 
						|
                    model=dataset.embedding_model
 | 
						|
                )
 | 
						|
            max_position = db.session.query(func.max(DocumentSegment.position)).filter(
 | 
						|
                DocumentSegment.document_id == document.id
 | 
						|
            ).scalar()
 | 
						|
            pre_segment_data_list = []
 | 
						|
            segment_data_list = []
 | 
						|
            keywords_list = []
 | 
						|
            for segment_item in segments:
 | 
						|
                content = segment_item['content']
 | 
						|
                doc_id = str(uuid.uuid4())
 | 
						|
                segment_hash = helper.generate_text_hash(content)
 | 
						|
                tokens = 0
 | 
						|
                if dataset.indexing_technique == 'high_quality' and embedding_model:
 | 
						|
                    # calc embedding use tokens
 | 
						|
                    tokens = embedding_model.get_text_embedding_num_tokens(
 | 
						|
                        texts=[content]
 | 
						|
                    )
 | 
						|
                segment_document = DocumentSegment(
 | 
						|
                    tenant_id=current_user.current_tenant_id,
 | 
						|
                    dataset_id=document.dataset_id,
 | 
						|
                    document_id=document.id,
 | 
						|
                    index_node_id=doc_id,
 | 
						|
                    index_node_hash=segment_hash,
 | 
						|
                    position=max_position + 1 if max_position else 1,
 | 
						|
                    content=content,
 | 
						|
                    word_count=len(content),
 | 
						|
                    tokens=tokens,
 | 
						|
                    status='completed',
 | 
						|
                    indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
 | 
						|
                    completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
 | 
						|
                    created_by=current_user.id
 | 
						|
                )
 | 
						|
                if document.doc_form == 'qa_model':
 | 
						|
                    segment_document.answer = segment_item['answer']
 | 
						|
                db.session.add(segment_document)
 | 
						|
                segment_data_list.append(segment_document)
 | 
						|
 | 
						|
                pre_segment_data_list.append(segment_document)
 | 
						|
                keywords_list.append(segment_item['keywords'])
 | 
						|
 | 
						|
            try:
 | 
						|
                # save vector index
 | 
						|
                VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
 | 
						|
            except Exception as e:
 | 
						|
                logging.exception("create segment index failed")
 | 
						|
                for segment_document in segment_data_list:
 | 
						|
                    segment_document.enabled = False
 | 
						|
                    segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
                    segment_document.status = 'error'
 | 
						|
                    segment_document.error = str(e)
 | 
						|
            db.session.commit()
 | 
						|
            return segment_data_list
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
 | 
						|
        indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
 | 
						|
        cache_result = redis_client.get(indexing_cache_key)
 | 
						|
        if cache_result is not None:
 | 
						|
            raise ValueError("Segment is indexing, please try again later")
 | 
						|
        if 'enabled' in args and args['enabled'] is not None:
 | 
						|
            action = args['enabled']
 | 
						|
            if segment.enabled != action:
 | 
						|
                if not action:
 | 
						|
                    segment.enabled = action
 | 
						|
                    segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
                    segment.disabled_by = current_user.id
 | 
						|
                    db.session.add(segment)
 | 
						|
                    db.session.commit()
 | 
						|
                    # Set cache to prevent indexing the same segment multiple times
 | 
						|
                    redis_client.setex(indexing_cache_key, 600, 1)
 | 
						|
                    disable_segment_from_index_task.delay(segment.id)
 | 
						|
                    return segment
 | 
						|
        if not segment.enabled:
 | 
						|
            if 'enabled' in args and args['enabled'] is not None:
 | 
						|
                if not args['enabled']:
 | 
						|
                    raise ValueError("Can't update disabled segment")
 | 
						|
            else:
 | 
						|
                raise ValueError("Can't update disabled segment")
 | 
						|
        try:
 | 
						|
            content = args['content']
 | 
						|
            if segment.content == content:
 | 
						|
                if document.doc_form == 'qa_model':
 | 
						|
                    segment.answer = args['answer']
 | 
						|
                if args.get('keywords'):
 | 
						|
                    segment.keywords = args['keywords']
 | 
						|
                segment.enabled = True
 | 
						|
                segment.disabled_at = None
 | 
						|
                segment.disabled_by = None
 | 
						|
                db.session.add(segment)
 | 
						|
                db.session.commit()
 | 
						|
                # update segment index task
 | 
						|
                if args['keywords']:
 | 
						|
                    keyword = Keyword(dataset)
 | 
						|
                    keyword.delete_by_ids([segment.index_node_id])
 | 
						|
                    document = RAGDocument(
 | 
						|
                        page_content=segment.content,
 | 
						|
                        metadata={
 | 
						|
                            "doc_id": segment.index_node_id,
 | 
						|
                            "doc_hash": segment.index_node_hash,
 | 
						|
                            "document_id": segment.document_id,
 | 
						|
                            "dataset_id": segment.dataset_id,
 | 
						|
                        }
 | 
						|
                    )
 | 
						|
                    keyword.add_texts([document], keywords_list=[args['keywords']])
 | 
						|
            else:
 | 
						|
                segment_hash = helper.generate_text_hash(content)
 | 
						|
                tokens = 0
 | 
						|
                if dataset.indexing_technique == 'high_quality':
 | 
						|
                    model_manager = ModelManager()
 | 
						|
                    embedding_model = model_manager.get_model_instance(
 | 
						|
                        tenant_id=current_user.current_tenant_id,
 | 
						|
                        provider=dataset.embedding_model_provider,
 | 
						|
                        model_type=ModelType.TEXT_EMBEDDING,
 | 
						|
                        model=dataset.embedding_model
 | 
						|
                    )
 | 
						|
 | 
						|
                    # calc embedding use tokens
 | 
						|
                    tokens = embedding_model.get_text_embedding_num_tokens(
 | 
						|
                        texts=[content]
 | 
						|
                    )
 | 
						|
                segment.content = content
 | 
						|
                segment.index_node_hash = segment_hash
 | 
						|
                segment.word_count = len(content)
 | 
						|
                segment.tokens = tokens
 | 
						|
                segment.status = 'completed'
 | 
						|
                segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
                segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
                segment.updated_by = current_user.id
 | 
						|
                segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
                segment.enabled = True
 | 
						|
                segment.disabled_at = None
 | 
						|
                segment.disabled_by = None
 | 
						|
                if document.doc_form == 'qa_model':
 | 
						|
                    segment.answer = args['answer']
 | 
						|
                db.session.add(segment)
 | 
						|
                db.session.commit()
 | 
						|
                # update segment vector index
 | 
						|
                VectorService.update_segment_vector(args['keywords'], segment, dataset)
 | 
						|
 | 
						|
        except Exception as e:
 | 
						|
            logging.exception("update segment index failed")
 | 
						|
            segment.enabled = False
 | 
						|
            segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 | 
						|
            segment.status = 'error'
 | 
						|
            segment.error = str(e)
 | 
						|
            db.session.commit()
 | 
						|
        segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
 | 
						|
        return segment
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
 | 
						|
        indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
 | 
						|
        cache_result = redis_client.get(indexing_cache_key)
 | 
						|
        if cache_result is not None:
 | 
						|
            raise ValueError("Segment is deleting.")
 | 
						|
 | 
						|
        # enabled segment need to delete index
 | 
						|
        if segment.enabled:
 | 
						|
            # send delete segment index task
 | 
						|
            redis_client.setex(indexing_cache_key, 600, 1)
 | 
						|
            delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
 | 
						|
        db.session.delete(segment)
 | 
						|
        db.session.commit()
 | 
						|
 | 
						|
 | 
						|
class DatasetCollectionBindingService:
 | 
						|
    @classmethod
 | 
						|
    def get_dataset_collection_binding(
 | 
						|
        cls, provider_name: str, model_name: str,
 | 
						|
        collection_type: str = 'dataset'
 | 
						|
    ) -> DatasetCollectionBinding:
 | 
						|
        dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
 | 
						|
            filter(
 | 
						|
            DatasetCollectionBinding.provider_name == provider_name,
 | 
						|
            DatasetCollectionBinding.model_name == model_name,
 | 
						|
            DatasetCollectionBinding.type == collection_type
 | 
						|
        ). \
 | 
						|
            order_by(DatasetCollectionBinding.created_at). \
 | 
						|
            first()
 | 
						|
 | 
						|
        if not dataset_collection_binding:
 | 
						|
            dataset_collection_binding = DatasetCollectionBinding(
 | 
						|
                provider_name=provider_name,
 | 
						|
                model_name=model_name,
 | 
						|
                collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
 | 
						|
                type=collection_type
 | 
						|
            )
 | 
						|
            db.session.add(dataset_collection_binding)
 | 
						|
            db.session.commit()
 | 
						|
        return dataset_collection_binding
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def get_dataset_collection_binding_by_id_and_type(
 | 
						|
        cls, collection_binding_id: str,
 | 
						|
        collection_type: str = 'dataset'
 | 
						|
    ) -> DatasetCollectionBinding:
 | 
						|
        dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
 | 
						|
            filter(
 | 
						|
            DatasetCollectionBinding.id == collection_binding_id,
 | 
						|
            DatasetCollectionBinding.type == collection_type
 | 
						|
        ). \
 | 
						|
            order_by(DatasetCollectionBinding.created_at). \
 | 
						|
            first()
 | 
						|
 | 
						|
        return dataset_collection_binding
 | 
						|
 | 
						|
 | 
						|
class DatasetPermissionService:
 | 
						|
    @classmethod
 | 
						|
    def get_dataset_partial_member_list(cls, dataset_id):
 | 
						|
        user_list_query = db.session.query(
 | 
						|
            DatasetPermission.account_id,
 | 
						|
        ).filter(
 | 
						|
            DatasetPermission.dataset_id == dataset_id
 | 
						|
        ).all()
 | 
						|
 | 
						|
        user_list = []
 | 
						|
        for user in user_list_query:
 | 
						|
            user_list.append(user.account_id)
 | 
						|
 | 
						|
        return user_list
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def update_partial_member_list(cls, tenant_id, dataset_id, user_list):
 | 
						|
        try:
 | 
						|
            db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
 | 
						|
            permissions = []
 | 
						|
            for user in user_list:
 | 
						|
                permission = DatasetPermission(
 | 
						|
                    tenant_id=tenant_id,
 | 
						|
                    dataset_id=dataset_id,
 | 
						|
                    account_id=user['user_id'],
 | 
						|
                )
 | 
						|
                permissions.append(permission)
 | 
						|
 | 
						|
            db.session.add_all(permissions)
 | 
						|
            db.session.commit()
 | 
						|
        except Exception as e:
 | 
						|
            db.session.rollback()
 | 
						|
            raise e
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def check_permission(cls, user, dataset, requested_permission, requested_partial_member_list):
 | 
						|
        if not user.is_dataset_editor:
 | 
						|
            raise NoPermissionError('User does not have permission to edit this dataset.')
 | 
						|
 | 
						|
        if user.is_dataset_operator and dataset.permission != requested_permission:
 | 
						|
            raise NoPermissionError('Dataset operators cannot change the dataset permissions.')
 | 
						|
 | 
						|
        if user.is_dataset_operator and requested_permission == 'partial_members':
 | 
						|
            if not requested_partial_member_list:
 | 
						|
                raise ValueError('Partial member list is required when setting to partial members.')
 | 
						|
 | 
						|
            local_member_list = cls.get_dataset_partial_member_list(dataset.id)
 | 
						|
            request_member_list = [user['user_id'] for user in requested_partial_member_list]
 | 
						|
            if set(local_member_list) != set(request_member_list):
 | 
						|
                raise ValueError('Dataset operators cannot change the dataset permissions.')
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def clear_partial_member_list(cls, dataset_id):
 | 
						|
        try:
 | 
						|
            db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
 | 
						|
            db.session.commit()
 | 
						|
        except Exception as e:
 | 
						|
            db.session.rollback()
 | 
						|
            raise e
 |