mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-31 02:42:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			75 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			75 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import logging
 | |
| import time
 | |
| 
 | |
| import click
 | |
| from celery import shared_task
 | |
| from flask import current_app
 | |
| 
 | |
| from core.index.index import IndexBuilder
 | |
| from core.index.vector_index.vector_index import VectorIndex
 | |
| from extensions.ext_database import db
 | |
| from models.dataset import DocumentSegment, Dataset, DatasetKeywordTable, DatasetQuery, DatasetProcessRule, \
 | |
|     AppDatasetJoin, Document
 | |
| 
 | |
| 
 | |
| @shared_task(queue='dataset')
 | |
| def clean_dataset_task(dataset_id: str, tenant_id: str, indexing_technique: str,
 | |
|                        index_struct: str, collection_binding_id: str):
 | |
|     """
 | |
|     Clean dataset when dataset deleted.
 | |
|     :param dataset_id: dataset id
 | |
|     :param tenant_id: tenant id
 | |
|     :param indexing_technique: indexing technique
 | |
|     :param index_struct: index struct dict
 | |
|     :param collection_binding_id: collection binding id
 | |
| 
 | |
|     Usage: clean_dataset_task.delay(dataset_id, tenant_id, indexing_technique, index_struct)
 | |
|     """
 | |
|     logging.info(click.style('Start clean dataset when dataset deleted: {}'.format(dataset_id), fg='green'))
 | |
|     start_at = time.perf_counter()
 | |
| 
 | |
|     try:
 | |
|         dataset = Dataset(
 | |
|             id=dataset_id,
 | |
|             tenant_id=tenant_id,
 | |
|             indexing_technique=indexing_technique,
 | |
|             index_struct=index_struct,
 | |
|             collection_binding_id=collection_binding_id
 | |
|         )
 | |
|         documents = db.session.query(Document).filter(Document.dataset_id == dataset_id).all()
 | |
|         segments = db.session.query(DocumentSegment).filter(DocumentSegment.dataset_id == dataset_id).all()
 | |
| 
 | |
|         kw_index = IndexBuilder.get_index(dataset, 'economy')
 | |
| 
 | |
|         # delete from vector index
 | |
|         if dataset.indexing_technique == 'high_quality':
 | |
|             vector_index = IndexBuilder.get_default_high_quality_index(dataset)
 | |
|             try:
 | |
|                 vector_index.delete_by_group_id(dataset.id)
 | |
|             except Exception:
 | |
|                 logging.exception("Delete doc index failed when dataset deleted.")
 | |
| 
 | |
|         # delete from keyword index
 | |
|         try:
 | |
|             kw_index.delete()
 | |
|         except Exception:
 | |
|             logging.exception("Delete nodes index failed when dataset deleted.")
 | |
| 
 | |
|         for document in documents:
 | |
|             db.session.delete(document)
 | |
| 
 | |
|         for segment in segments:
 | |
|             db.session.delete(segment)
 | |
| 
 | |
|         db.session.query(DatasetProcessRule).filter(DatasetProcessRule.dataset_id == dataset_id).delete()
 | |
|         db.session.query(DatasetQuery).filter(DatasetQuery.dataset_id == dataset_id).delete()
 | |
|         db.session.query(AppDatasetJoin).filter(AppDatasetJoin.dataset_id == dataset_id).delete()
 | |
| 
 | |
|         db.session.commit()
 | |
| 
 | |
|         end_at = time.perf_counter()
 | |
|         logging.info(
 | |
|             click.style('Cleaned dataset when dataset deleted: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
 | |
|     except Exception:
 | |
|         logging.exception("Cleaned dataset when dataset deleted failed")
 | 
