mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-31 02:42:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			910 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			910 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from datetime import datetime
 | |
| 
 | |
| from flask import request
 | |
| from flask_login import current_user
 | |
| from flask_restful import Resource, fields, marshal, marshal_with, reqparse
 | |
| from sqlalchemy import asc, desc
 | |
| from werkzeug.exceptions import Forbidden, NotFound
 | |
| 
 | |
| import services
 | |
| from controllers.console import api
 | |
| from controllers.console.app.error import (
 | |
|     ProviderModelCurrentlyNotSupportError,
 | |
|     ProviderNotInitializeError,
 | |
|     ProviderQuotaExceededError,
 | |
| )
 | |
| from controllers.console.datasets.error import (
 | |
|     ArchivedDocumentImmutableError,
 | |
|     DocumentAlreadyFinishedError,
 | |
|     DocumentIndexingError,
 | |
|     InvalidActionError,
 | |
|     InvalidMetadataError,
 | |
| )
 | |
| from controllers.console.setup import setup_required
 | |
| from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
 | |
| from core.errors.error import (
 | |
|     LLMBadRequestError,
 | |
|     ModelCurrentlyNotSupportError,
 | |
|     ProviderTokenNotInitError,
 | |
|     QuotaExceededError,
 | |
| )
 | |
| from core.indexing_runner import IndexingRunner
 | |
| from core.model_manager import ModelManager
 | |
| from core.model_runtime.entities.model_entities import ModelType
 | |
| from core.model_runtime.errors.invoke import InvokeAuthorizationError
 | |
| from core.rag.extractor.entity.extract_setting import ExtractSetting
 | |
| from extensions.ext_database import db
 | |
| from extensions.ext_redis import redis_client
 | |
| from fields.document_fields import (
 | |
|     dataset_and_document_fields,
 | |
|     document_fields,
 | |
|     document_status_fields,
 | |
|     document_with_segments_fields,
 | |
| )
 | |
| from libs.login import login_required
 | |
| from models.dataset import Dataset, DatasetProcessRule, Document, DocumentSegment
 | |
| from models.model import UploadFile
 | |
| from services.dataset_service import DatasetService, DocumentService
 | |
| from tasks.add_document_to_index_task import add_document_to_index_task
 | |
| from tasks.remove_document_from_index_task import remove_document_from_index_task
 | |
| 
 | |
| 
 | |
| class DocumentResource(Resource):
 | |
|     def get_document(self, dataset_id: str, document_id: str) -> Document:
 | |
|         dataset = DatasetService.get_dataset(dataset_id)
 | |
|         if not dataset:
 | |
|             raise NotFound('Dataset not found.')
 | |
| 
 | |
|         try:
 | |
|             DatasetService.check_dataset_permission(dataset, current_user)
 | |
|         except services.errors.account.NoPermissionError as e:
 | |
|             raise Forbidden(str(e))
 | |
| 
 | |
|         document = DocumentService.get_document(dataset_id, document_id)
 | |
| 
 | |
|         if not document:
 | |
|             raise NotFound('Document not found.')
 | |
| 
 | |
|         if document.tenant_id != current_user.current_tenant_id:
 | |
|             raise Forbidden('No permission.')
 | |
| 
 | |
|         return document
 | |
| 
 | |
|     def get_batch_documents(self, dataset_id: str, batch: str) -> list[Document]:
 | |
|         dataset = DatasetService.get_dataset(dataset_id)
 | |
|         if not dataset:
 | |
|             raise NotFound('Dataset not found.')
 | |
| 
 | |
|         try:
 | |
|             DatasetService.check_dataset_permission(dataset, current_user)
 | |
|         except services.errors.account.NoPermissionError as e:
 | |
|             raise Forbidden(str(e))
 | |
| 
 | |
|         documents = DocumentService.get_batch_documents(dataset_id, batch)
 | |
| 
 | |
|         if not documents:
 | |
|             raise NotFound('Documents not found.')
 | |
| 
 | |
|         return documents
 | |
| 
 | |
| 
 | |
| class GetProcessRuleApi(Resource):
 | |
|     @setup_required
 | |
|     @login_required
 | |
|     @account_initialization_required
 | |
|     def get(self):
 | |
|         req_data = request.args
 | |
| 
 | |
|         document_id = req_data.get('document_id')
 | |
| 
 | |
|         # get default rules
 | |
|         mode = DocumentService.DEFAULT_RULES['mode']
 | |
|         rules = DocumentService.DEFAULT_RULES['rules']
 | |
|         if document_id:
 | |
|             # get the latest process rule
 | |
|             document = Document.query.get_or_404(document_id)
 | |
| 
 | |
|             dataset = DatasetService.get_dataset(document.dataset_id)
 | |
| 
 | |
|             if not dataset:
 | |
|                 raise NotFound('Dataset not found.')
 | |
| 
 | |
|             try:
 | |
|                 DatasetService.check_dataset_permission(dataset, current_user)
 | |
|             except services.errors.account.NoPermissionError as e:
 | |
|                 raise Forbidden(str(e))
 | |
| 
 | |
|             # get the latest process rule
 | |
|             dataset_process_rule = db.session.query(DatasetProcessRule). \
 | |
|                 filter(DatasetProcessRule.dataset_id == document.dataset_id). \
 | |
|                 order_by(DatasetProcessRule.created_at.desc()). \
 | |
|                 limit(1). \
 | |
|                 one_or_none()
 | |
|             if dataset_process_rule:
 | |
|                 mode = dataset_process_rule.mode
 | |
|                 rules = dataset_process_rule.rules_dict
 | |
| 
 | |
|         return {
 | |
|             'mode': mode,
 | |
|             'rules': rules
 | |
|         }
 | |
| 
 | |
| 
 | |
| class DatasetDocumentListApi(Resource):
 | |
|     @setup_required
 | |
|     @login_required
 | |
|     @account_initialization_required
 | |
|     def get(self, dataset_id):
 | |
|         dataset_id = str(dataset_id)
 | |
|         page = request.args.get('page', default=1, type=int)
 | |
|         limit = request.args.get('limit', default=20, type=int)
 | |
|         search = request.args.get('keyword', default=None, type=str)
 | |
|         sort = request.args.get('sort', default='-created_at', type=str)
 | |
|         fetch = request.args.get('fetch', default=False, type=bool)
 | |
|         dataset = DatasetService.get_dataset(dataset_id)
 | |
|         if not dataset:
 | |
|             raise NotFound('Dataset not found.')
 | |
| 
 | |
|         try:
 | |
|             DatasetService.check_dataset_permission(dataset, current_user)
 | |
|         except services.errors.account.NoPermissionError as e:
 | |
|             raise Forbidden(str(e))
 | |
| 
 | |
|         query = Document.query.filter_by(
 | |
|             dataset_id=str(dataset_id), tenant_id=current_user.current_tenant_id)
 | |
| 
 | |
|         if search:
 | |
|             search = f'%{search}%'
 | |
|             query = query.filter(Document.name.like(search))
 | |
| 
 | |
|         if sort.startswith('-'):
 | |
|             sort_logic = desc
 | |
|             sort = sort[1:]
 | |
|         else:
 | |
|             sort_logic = asc
 | |
| 
 | |
|         if sort == 'hit_count':
 | |
|             sub_query = db.select(DocumentSegment.document_id,
 | |
|                                   db.func.sum(DocumentSegment.hit_count).label("total_hit_count")) \
 | |
|                 .group_by(DocumentSegment.document_id) \
 | |
|                 .subquery()
 | |
| 
 | |
|             query = query.outerjoin(sub_query, sub_query.c.document_id == Document.id) \
 | |
|                 .order_by(sort_logic(db.func.coalesce(sub_query.c.total_hit_count, 0)))
 | |
|         elif sort == 'created_at':
 | |
|             query = query.order_by(sort_logic(Document.created_at))
 | |
|         else:
 | |
|             query = query.order_by(desc(Document.created_at))
 | |
| 
 | |
|         paginated_documents = query.paginate(
 | |
|             page=page, per_page=limit, max_per_page=100, error_out=False)
 | |
|         documents = paginated_documents.items
 | |
|         if fetch:
 | |
|             for document in documents:
 | |
|                 completed_segments = DocumentSegment.query.filter(DocumentSegment.completed_at.isnot(None),
 | |
|                                                                   DocumentSegment.document_id == str(document.id),
 | |
|                                                                   DocumentSegment.status != 're_segment').count()
 | |
|                 total_segments = DocumentSegment.query.filter(DocumentSegment.document_id == str(document.id),
 | |
|                                                               DocumentSegment.status != 're_segment').count()
 | |
|                 document.completed_segments = completed_segments
 | |
|                 document.total_segments = total_segments
 | |
|             data = marshal(documents, document_with_segments_fields)
 | |
|         else:
 | |
|             data = marshal(documents, document_fields)
 | |
|         response = {
 | |
|             'data': data,
 | |
|             'has_more': len(documents) == limit,
 | |
|             'limit': limit,
 | |
|             'total': paginated_documents.total,
 | |
|             'page': page
 | |
|         }
 | |
| 
 | |
|         return response
 | |
| 
 | |
|     documents_and_batch_fields = {
 | |
|         'documents': fields.List(fields.Nested(document_fields)),
 | |
|         'batch': fields.String
 | |
|     }
 | |
| 
 | |
|     @setup_required
 | |
|     @login_required
 | |
|     @account_initialization_required
 | |
|     @marshal_with(documents_and_batch_fields)
 | |
|     @cloud_edition_billing_resource_check('vector_space')
 | |
|     def post(self, dataset_id):
 | |
|         dataset_id = str(dataset_id)
 | |
| 
 | |
|         dataset = DatasetService.get_dataset(dataset_id)
 | |
| 
 | |
|         if not dataset:
 | |
|             raise NotFound('Dataset not found.')
 | |
| 
 | |
|         # The role of the current user in the ta table must be admin or owner
 | |
|         if not current_user.is_admin_or_owner:
 | |
|             raise Forbidden()
 | |
| 
 | |
|         try:
 | |
|             DatasetService.check_dataset_permission(dataset, current_user)
 | |
|         except services.errors.account.NoPermissionError as e:
 | |
|             raise Forbidden(str(e))
 | |
| 
 | |
|         parser = reqparse.RequestParser()
 | |
|         parser.add_argument('indexing_technique', type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False,
 | |
|                             location='json')
 | |
|         parser.add_argument('data_source', type=dict, required=False, location='json')
 | |
|         parser.add_argument('process_rule', type=dict, required=False, location='json')
 | |
|         parser.add_argument('duplicate', type=bool, nullable=False, location='json')
 | |
|         parser.add_argument('original_document_id', type=str, required=False, location='json')
 | |
|         parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
 | |
|         parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
 | |
|                             location='json')
 | |
|         parser.add_argument('retrieval_model', type=dict, required=False, nullable=False,
 | |
|                             location='json')
 | |
|         args = parser.parse_args()
 | |
| 
 | |
|         if not dataset.indexing_technique and not args['indexing_technique']:
 | |
|             raise ValueError('indexing_technique is required.')
 | |
| 
 | |
|         # validate args
 | |
|         DocumentService.document_create_args_validate(args)
 | |
| 
 | |
|         try:
 | |
|             documents, batch = DocumentService.save_document_with_dataset_id(dataset, args, current_user)
 | |
|         except ProviderTokenNotInitError as ex:
 | |
|             raise ProviderNotInitializeError(ex.description)
 | |
|         except QuotaExceededError:
 | |
|             raise ProviderQuotaExceededError()
 | |
|         except ModelCurrentlyNotSupportError:
 | |
|             raise ProviderModelCurrentlyNotSupportError()
 | |
| 
 | |
|         return {
 | |
|             'documents': documents,
 | |
|             'batch': batch
 | |
|         }
 | |
| 
 | |
| 
 | |
| class DatasetInitApi(Resource):
 | |
| 
 | |
|     @setup_required
 | |
|     @login_required
 | |
|     @account_initialization_required
 | |
|     @marshal_with(dataset_and_document_fields)
 | |
|     @cloud_edition_billing_resource_check('vector_space')
 | |
|     def post(self):
 | |
|         # The role of the current user in the ta table must be admin or owner
 | |
|         if not current_user.is_admin_or_owner:
 | |
|             raise Forbidden()
 | |
| 
 | |
|         parser = reqparse.RequestParser()
 | |
|         parser.add_argument('indexing_technique', type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, required=True,
 | |
|                             nullable=False, location='json')
 | |
|         parser.add_argument('data_source', type=dict, required=True, nullable=True, location='json')
 | |
|         parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
 | |
|         parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
 | |
|         parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
 | |
|                             location='json')
 | |
|         parser.add_argument('retrieval_model', type=dict, required=False, nullable=False,
 | |
|                             location='json')
 | |
|         args = parser.parse_args()
 | |
|         if args['indexing_technique'] == 'high_quality':
 | |
|             try:
 | |
|                 model_manager = ModelManager()
 | |
|                 model_manager.get_default_model_instance(
 | |
|                     tenant_id=current_user.current_tenant_id,
 | |
|                     model_type=ModelType.TEXT_EMBEDDING
 | |
|                 )
 | |
|             except InvokeAuthorizationError:
 | |
|                 raise ProviderNotInitializeError(
 | |
|                     "No Embedding Model available. Please configure a valid provider "
 | |
|                     "in the Settings -> Model Provider.")
 | |
|             except ProviderTokenNotInitError as ex:
 | |
|                 raise ProviderNotInitializeError(ex.description)
 | |
| 
 | |
|         # validate args
 | |
|         DocumentService.document_create_args_validate(args)
 | |
| 
 | |
|         try:
 | |
|             dataset, documents, batch = DocumentService.save_document_without_dataset_id(
 | |
|                 tenant_id=current_user.current_tenant_id,
 | |
|                 document_data=args,
 | |
|                 account=current_user
 | |
|             )
 | |
|         except ProviderTokenNotInitError as ex:
 | |
|             raise ProviderNotInitializeError(ex.description)
 | |
|         except QuotaExceededError:
 | |
|             raise ProviderQuotaExceededError()
 | |
|         except ModelCurrentlyNotSupportError:
 | |
|             raise ProviderModelCurrentlyNotSupportError()
 | |
| 
 | |
|         response = {
 | |
|             'dataset': dataset,
 | |
|             'documents': documents,
 | |
|             'batch': batch
 | |
|         }
 | |
| 
 | |
|         return response
 | |
| 
 | |
| 
 | |
| class DocumentIndexingEstimateApi(DocumentResource):
 | |
| 
 | |
|     @setup_required
 | |
|     @login_required
 | |
|     @account_initialization_required
 | |
|     def get(self, dataset_id, document_id):
 | |
|         dataset_id = str(dataset_id)
 | |
|         document_id = str(document_id)
 | |
|         document = self.get_document(dataset_id, document_id)
 | |
| 
 | |
|         if document.indexing_status in ['completed', 'error']:
 | |
|             raise DocumentAlreadyFinishedError()
 | |
| 
 | |
|         data_process_rule = document.dataset_process_rule
 | |
|         data_process_rule_dict = data_process_rule.to_dict()
 | |
| 
 | |
|         response = {
 | |
|             "tokens": 0,
 | |
|             "total_price": 0,
 | |
|             "currency": "USD",
 | |
|             "total_segments": 0,
 | |
|             "preview": []
 | |
|         }
 | |
| 
 | |
|         if document.data_source_type == 'upload_file':
 | |
|             data_source_info = document.data_source_info_dict
 | |
|             if data_source_info and 'upload_file_id' in data_source_info:
 | |
|                 file_id = data_source_info['upload_file_id']
 | |
| 
 | |
|                 file = db.session.query(UploadFile).filter(
 | |
|                     UploadFile.tenant_id == document.tenant_id,
 | |
|                     UploadFile.id == file_id
 | |
|                 ).first()
 | |
| 
 | |
|                 # raise error if file not found
 | |
|                 if not file:
 | |
|                     raise NotFound('File not found.')
 | |
| 
 | |
|                 extract_setting = ExtractSetting(
 | |
|                     datasource_type="upload_file",
 | |
|                     upload_file=file,
 | |
|                     document_model=document.doc_form
 | |
|                 )
 | |
| 
 | |
|                 indexing_runner = IndexingRunner()
 | |
| 
 | |
|                 try:
 | |
|                     response = indexing_runner.indexing_estimate(current_user.current_tenant_id, [extract_setting],
 | |
|                                                                  data_process_rule_dict, document.doc_form,
 | |
|                                                                  'English', dataset_id)
 | |
|                 except LLMBadRequestError:
 | |
|                     raise ProviderNotInitializeError(
 | |
|                         "No Embedding Model available. Please configure a valid provider "
 | |
|                         "in the Settings -> Model Provider.")
 | |
|                 except ProviderTokenNotInitError as ex:
 | |
|                     raise ProviderNotInitializeError(ex.description)
 | |
| 
 | |
|         return response
 | |
| 
 | |
| 
 | |
| class DocumentBatchIndexingEstimateApi(DocumentResource):
 | |
| 
 | |
|     @setup_required
 | |
|     @login_required
 | |
|     @account_initialization_required
 | |
|     def get(self, dataset_id, batch):
 | |
|         dataset_id = str(dataset_id)
 | |
|         batch = str(batch)
 | |
|         dataset = DatasetService.get_dataset(dataset_id)
 | |
|         if dataset is None:
 | |
|             raise NotFound("Dataset not found.")
 | |
|         documents = self.get_batch_documents(dataset_id, batch)
 | |
|         response = {
 | |
|             "tokens": 0,
 | |
|             "total_price": 0,
 | |
|             "currency": "USD",
 | |
|             "total_segments": 0,
 | |
|             "preview": []
 | |
|         }
 | |
|         if not documents:
 | |
|             return response
 | |
|         data_process_rule = documents[0].dataset_process_rule
 | |
|         data_process_rule_dict = data_process_rule.to_dict()
 | |
|         info_list = []
 | |
|         extract_settings = []
 | |
|         for document in documents:
 | |
|             if document.indexing_status in ['completed', 'error']:
 | |
|                 raise DocumentAlreadyFinishedError()
 | |
|             data_source_info = document.data_source_info_dict
 | |
|             # format document files info
 | |
|             if data_source_info and 'upload_file_id' in data_source_info:
 | |
|                 file_id = data_source_info['upload_file_id']
 | |
|                 info_list.append(file_id)
 | |
|             # format document notion info
 | |
|             elif data_source_info and 'notion_workspace_id' in data_source_info and 'notion_page_id' in data_source_info:
 | |
|                 pages = []
 | |
|                 page = {
 | |
|                     'page_id': data_source_info['notion_page_id'],
 | |
|                     'type': data_source_info['type']
 | |
|                 }
 | |
|                 pages.append(page)
 | |
|                 notion_info = {
 | |
|                     'workspace_id': data_source_info['notion_workspace_id'],
 | |
|                     'pages': pages
 | |
|                 }
 | |
|                 info_list.append(notion_info)
 | |
| 
 | |
|             if document.data_source_type == 'upload_file':
 | |
|                 file_id = data_source_info['upload_file_id']
 | |
|                 file_detail = db.session.query(UploadFile).filter(
 | |
|                     UploadFile.tenant_id == current_user.current_tenant_id,
 | |
|                     UploadFile.id == file_id
 | |
|                 ).first()
 | |
| 
 | |
|                 if file_detail is None:
 | |
|                     raise NotFound("File not found.")
 | |
| 
 | |
|                 extract_setting = ExtractSetting(
 | |
|                     datasource_type="upload_file",
 | |
|                     upload_file=file_detail,
 | |
|                     document_model=document.doc_form
 | |
|                 )
 | |
|                 extract_settings.append(extract_setting)
 | |
| 
 | |
|             elif document.data_source_type == 'notion_import':
 | |
|                 extract_setting = ExtractSetting(
 | |
|                     datasource_type="notion_import",
 | |
|                     notion_info={
 | |
|                         "notion_workspace_id": data_source_info['notion_workspace_id'],
 | |
|                         "notion_obj_id": data_source_info['notion_page_id'],
 | |
|                         "notion_page_type": data_source_info['type']
 | |
|                     },
 | |
|                     document_model=document.doc_form
 | |
|                 )
 | |
|                 extract_settings.append(extract_setting)
 | |
| 
 | |
|             else:
 | |
|                 raise ValueError('Data source type not support')
 | |
|             indexing_runner = IndexingRunner()
 | |
|             try:
 | |
|                 response = indexing_runner.indexing_estimate(current_user.current_tenant_id, extract_settings,
 | |
|                                                              data_process_rule_dict, document.doc_form,
 | |
|                                                              'English', dataset_id)
 | |
|             except LLMBadRequestError:
 | |
|                 raise ProviderNotInitializeError(
 | |
|                     "No Embedding Model available. Please configure a valid provider "
 | |
|                     "in the Settings -> Model Provider.")
 | |
|             except ProviderTokenNotInitError as ex:
 | |
|                 raise ProviderNotInitializeError(ex.description)
 | |
|         return response
 | |
| 
 | |
| 
 | |
| class DocumentBatchIndexingStatusApi(DocumentResource):
 | |
| 
 | |
|     @setup_required
 | |
|     @login_required
 | |
|     @account_initialization_required
 | |
|     def get(self, dataset_id, batch):
 | |
|         dataset_id = str(dataset_id)
 | |
|         batch = str(batch)
 | |
|         documents = self.get_batch_documents(dataset_id, batch)
 | |
|         documents_status = []
 | |
|         for document in documents:
 | |
|             completed_segments = DocumentSegment.query.filter(DocumentSegment.completed_at.isnot(None),
 | |
|                                                               DocumentSegment.document_id == str(document.id),
 | |
|                                                               DocumentSegment.status != 're_segment').count()
 | |
|             total_segments = DocumentSegment.query.filter(DocumentSegment.document_id == str(document.id),
 | |
|                                                           DocumentSegment.status != 're_segment').count()
 | |
|             document.completed_segments = completed_segments
 | |
|             document.total_segments = total_segments
 | |
|             if document.is_paused:
 | |
|                 document.indexing_status = 'paused'
 | |
|             documents_status.append(marshal(document, document_status_fields))
 | |
|         data = {
 | |
|             'data': documents_status
 | |
|         }
 | |
|         return data
 | |
| 
 | |
| 
 | |
| class DocumentIndexingStatusApi(DocumentResource):
 | |
| 
 | |
|     @setup_required
 | |
|     @login_required
 | |
|     @account_initialization_required
 | |
|     def get(self, dataset_id, document_id):
 | |
|         dataset_id = str(dataset_id)
 | |
|         document_id = str(document_id)
 | |
|         document = self.get_document(dataset_id, document_id)
 | |
| 
 | |
|         completed_segments = DocumentSegment.query \
 | |
|             .filter(DocumentSegment.completed_at.isnot(None),
 | |
|                     DocumentSegment.document_id == str(document_id),
 | |
|                     DocumentSegment.status != 're_segment') \
 | |
|             .count()
 | |
|         total_segments = DocumentSegment.query \
 | |
|             .filter(DocumentSegment.document_id == str(document_id),
 | |
|                     DocumentSegment.status != 're_segment') \
 | |
|             .count()
 | |
| 
 | |
|         document.completed_segments = completed_segments
 | |
|         document.total_segments = total_segments
 | |
|         if document.is_paused:
 | |
|             document.indexing_status = 'paused'
 | |
|         return marshal(document, document_status_fields)
 | |
| 
 | |
| 
 | |
| class DocumentDetailApi(DocumentResource):
 | |
|     METADATA_CHOICES = {'all', 'only', 'without'}
 | |
| 
 | |
|     @setup_required
 | |
|     @login_required
 | |
|     @account_initialization_required
 | |
|     def get(self, dataset_id, document_id):
 | |
|         dataset_id = str(dataset_id)
 | |
|         document_id = str(document_id)
 | |
|         document = self.get_document(dataset_id, document_id)
 | |
| 
 | |
|         metadata = request.args.get('metadata', 'all')
 | |
|         if metadata not in self.METADATA_CHOICES:
 | |
|             raise InvalidMetadataError(f'Invalid metadata value: {metadata}')
 | |
| 
 | |
|         if metadata == 'only':
 | |
|             response = {
 | |
|                 'id': document.id,
 | |
|                 'doc_type': document.doc_type,
 | |
|                 'doc_metadata': document.doc_metadata
 | |
|             }
 | |
|         elif metadata == 'without':
 | |
|             process_rules = DatasetService.get_process_rules(dataset_id)
 | |
|             data_source_info = document.data_source_detail_dict
 | |
|             response = {
 | |
|                 'id': document.id,
 | |
|                 'position': document.position,
 | |
|                 'data_source_type': document.data_source_type,
 | |
|                 'data_source_info': data_source_info,
 | |
|                 'dataset_process_rule_id': document.dataset_process_rule_id,
 | |
|                 'dataset_process_rule': process_rules,
 | |
|                 'name': document.name,
 | |
|                 'created_from': document.created_from,
 | |
|                 'created_by': document.created_by,
 | |
|                 'created_at': document.created_at.timestamp(),
 | |
|                 'tokens': document.tokens,
 | |
|                 'indexing_status': document.indexing_status,
 | |
|                 'completed_at': int(document.completed_at.timestamp()) if document.completed_at else None,
 | |
|                 'updated_at': int(document.updated_at.timestamp()) if document.updated_at else None,
 | |
|                 'indexing_latency': document.indexing_latency,
 | |
|                 'error': document.error,
 | |
|                 'enabled': document.enabled,
 | |
|                 'disabled_at': int(document.disabled_at.timestamp()) if document.disabled_at else None,
 | |
|                 'disabled_by': document.disabled_by,
 | |
|                 'archived': document.archived,
 | |
|                 'segment_count': document.segment_count,
 | |
|                 'average_segment_length': document.average_segment_length,
 | |
|                 'hit_count': document.hit_count,
 | |
|                 'display_status': document.display_status,
 | |
|                 'doc_form': document.doc_form
 | |
|             }
 | |
|         else:
 | |
|             process_rules = DatasetService.get_process_rules(dataset_id)
 | |
|             data_source_info = document.data_source_detail_dict
 | |
|             response = {
 | |
|                 'id': document.id,
 | |
|                 'position': document.position,
 | |
|                 'data_source_type': document.data_source_type,
 | |
|                 'data_source_info': data_source_info,
 | |
|                 'dataset_process_rule_id': document.dataset_process_rule_id,
 | |
|                 'dataset_process_rule': process_rules,
 | |
|                 'name': document.name,
 | |
|                 'created_from': document.created_from,
 | |
|                 'created_by': document.created_by,
 | |
|                 'created_at': document.created_at.timestamp(),
 | |
|                 'tokens': document.tokens,
 | |
|                 'indexing_status': document.indexing_status,
 | |
|                 'completed_at': int(document.completed_at.timestamp()) if document.completed_at else None,
 | |
|                 'updated_at': int(document.updated_at.timestamp()) if document.updated_at else None,
 | |
|                 'indexing_latency': document.indexing_latency,
 | |
|                 'error': document.error,
 | |
|                 'enabled': document.enabled,
 | |
|                 'disabled_at': int(document.disabled_at.timestamp()) if document.disabled_at else None,
 | |
|                 'disabled_by': document.disabled_by,
 | |
|                 'archived': document.archived,
 | |
|                 'doc_type': document.doc_type,
 | |
|                 'doc_metadata': document.doc_metadata,
 | |
|                 'segment_count': document.segment_count,
 | |
|                 'average_segment_length': document.average_segment_length,
 | |
|                 'hit_count': document.hit_count,
 | |
|                 'display_status': document.display_status,
 | |
|                 'doc_form': document.doc_form
 | |
|             }
 | |
| 
 | |
|         return response, 200
 | |
| 
 | |
| 
 | |
| class DocumentProcessingApi(DocumentResource):
 | |
|     @setup_required
 | |
|     @login_required
 | |
|     @account_initialization_required
 | |
|     def patch(self, dataset_id, document_id, action):
 | |
|         dataset_id = str(dataset_id)
 | |
|         document_id = str(document_id)
 | |
|         document = self.get_document(dataset_id, document_id)
 | |
| 
 | |
|         # The role of the current user in the ta table must be admin or owner
 | |
|         if not current_user.is_admin_or_owner:
 | |
|             raise Forbidden()
 | |
| 
 | |
|         if action == "pause":
 | |
|             if document.indexing_status != "indexing":
 | |
|                 raise InvalidActionError('Document not in indexing state.')
 | |
| 
 | |
|             document.paused_by = current_user.id
 | |
|             document.paused_at = datetime.utcnow()
 | |
|             document.is_paused = True
 | |
|             db.session.commit()
 | |
| 
 | |
|         elif action == "resume":
 | |
|             if document.indexing_status not in ["paused", "error"]:
 | |
|                 raise InvalidActionError('Document not in paused or error state.')
 | |
| 
 | |
|             document.paused_by = None
 | |
|             document.paused_at = None
 | |
|             document.is_paused = False
 | |
|             db.session.commit()
 | |
|         else:
 | |
|             raise InvalidActionError()
 | |
| 
 | |
|         return {'result': 'success'}, 200
 | |
| 
 | |
| 
 | |
| class DocumentDeleteApi(DocumentResource):
 | |
|     @setup_required
 | |
|     @login_required
 | |
|     @account_initialization_required
 | |
|     def delete(self, dataset_id, document_id):
 | |
|         dataset_id = str(dataset_id)
 | |
|         document_id = str(document_id)
 | |
|         dataset = DatasetService.get_dataset(dataset_id)
 | |
|         if dataset is None:
 | |
|             raise NotFound("Dataset not found.")
 | |
|         # check user's model setting
 | |
|         DatasetService.check_dataset_model_setting(dataset)
 | |
| 
 | |
|         document = self.get_document(dataset_id, document_id)
 | |
| 
 | |
|         try:
 | |
|             DocumentService.delete_document(document)
 | |
|         except services.errors.document.DocumentIndexingError:
 | |
|             raise DocumentIndexingError('Cannot delete document during indexing.')
 | |
| 
 | |
|         return {'result': 'success'}, 204
 | |
| 
 | |
| 
 | |
| class DocumentMetadataApi(DocumentResource):
 | |
|     @setup_required
 | |
|     @login_required
 | |
|     @account_initialization_required
 | |
|     def put(self, dataset_id, document_id):
 | |
|         dataset_id = str(dataset_id)
 | |
|         document_id = str(document_id)
 | |
|         document = self.get_document(dataset_id, document_id)
 | |
| 
 | |
|         req_data = request.get_json()
 | |
| 
 | |
|         doc_type = req_data.get('doc_type')
 | |
|         doc_metadata = req_data.get('doc_metadata')
 | |
| 
 | |
|         # The role of the current user in the ta table must be admin or owner
 | |
|         if not current_user.is_admin_or_owner:
 | |
|             raise Forbidden()
 | |
| 
 | |
|         if doc_type is None or doc_metadata is None:
 | |
|             raise ValueError('Both doc_type and doc_metadata must be provided.')
 | |
| 
 | |
|         if doc_type not in DocumentService.DOCUMENT_METADATA_SCHEMA:
 | |
|             raise ValueError('Invalid doc_type.')
 | |
| 
 | |
|         if not isinstance(doc_metadata, dict):
 | |
|             raise ValueError('doc_metadata must be a dictionary.')
 | |
| 
 | |
|         metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[doc_type]
 | |
| 
 | |
|         document.doc_metadata = {}
 | |
|         if doc_type == 'others':
 | |
|             document.doc_metadata = doc_metadata
 | |
|         else:
 | |
|             for key, value_type in metadata_schema.items():
 | |
|                 value = doc_metadata.get(key)
 | |
|                 if value is not None and isinstance(value, value_type):
 | |
|                     document.doc_metadata[key] = value
 | |
| 
 | |
|         document.doc_type = doc_type
 | |
|         document.updated_at = datetime.utcnow()
 | |
|         db.session.commit()
 | |
| 
 | |
|         return {'result': 'success', 'message': 'Document metadata updated.'}, 200
 | |
| 
 | |
| 
 | |
| class DocumentStatusApi(DocumentResource):
 | |
|     @setup_required
 | |
|     @login_required
 | |
|     @account_initialization_required
 | |
|     @cloud_edition_billing_resource_check('vector_space')
 | |
|     def patch(self, dataset_id, document_id, action):
 | |
|         dataset_id = str(dataset_id)
 | |
|         document_id = str(document_id)
 | |
|         dataset = DatasetService.get_dataset(dataset_id)
 | |
|         if dataset is None:
 | |
|             raise NotFound("Dataset not found.")
 | |
|         # check user's model setting
 | |
|         DatasetService.check_dataset_model_setting(dataset)
 | |
| 
 | |
|         document = self.get_document(dataset_id, document_id)
 | |
| 
 | |
|         # The role of the current user in the ta table must be admin or owner
 | |
|         if not current_user.is_admin_or_owner:
 | |
|             raise Forbidden()
 | |
| 
 | |
|         indexing_cache_key = 'document_{}_indexing'.format(document.id)
 | |
|         cache_result = redis_client.get(indexing_cache_key)
 | |
|         if cache_result is not None:
 | |
|             raise InvalidActionError("Document is being indexed, please try again later")
 | |
| 
 | |
|         if action == "enable":
 | |
|             if document.enabled:
 | |
|                 raise InvalidActionError('Document already enabled.')
 | |
| 
 | |
|             document.enabled = True
 | |
|             document.disabled_at = None
 | |
|             document.disabled_by = None
 | |
|             document.updated_at = datetime.utcnow()
 | |
|             db.session.commit()
 | |
| 
 | |
|             # Set cache to prevent indexing the same document multiple times
 | |
|             redis_client.setex(indexing_cache_key, 600, 1)
 | |
| 
 | |
|             add_document_to_index_task.delay(document_id)
 | |
| 
 | |
|             return {'result': 'success'}, 200
 | |
| 
 | |
|         elif action == "disable":
 | |
|             if not document.completed_at or document.indexing_status != 'completed':
 | |
|                 raise InvalidActionError('Document is not completed.')
 | |
|             if not document.enabled:
 | |
|                 raise InvalidActionError('Document already disabled.')
 | |
| 
 | |
|             document.enabled = False
 | |
|             document.disabled_at = datetime.utcnow()
 | |
|             document.disabled_by = current_user.id
 | |
|             document.updated_at = datetime.utcnow()
 | |
|             db.session.commit()
 | |
| 
 | |
|             # Set cache to prevent indexing the same document multiple times
 | |
|             redis_client.setex(indexing_cache_key, 600, 1)
 | |
| 
 | |
|             remove_document_from_index_task.delay(document_id)
 | |
| 
 | |
|             return {'result': 'success'}, 200
 | |
| 
 | |
|         elif action == "archive":
 | |
|             if document.archived:
 | |
|                 raise InvalidActionError('Document already archived.')
 | |
| 
 | |
|             document.archived = True
 | |
|             document.archived_at = datetime.utcnow()
 | |
|             document.archived_by = current_user.id
 | |
|             document.updated_at = datetime.utcnow()
 | |
|             db.session.commit()
 | |
| 
 | |
|             if document.enabled:
 | |
|                 # Set cache to prevent indexing the same document multiple times
 | |
|                 redis_client.setex(indexing_cache_key, 600, 1)
 | |
| 
 | |
|                 remove_document_from_index_task.delay(document_id)
 | |
| 
 | |
|             return {'result': 'success'}, 200
 | |
|         elif action == "un_archive":
 | |
|             if not document.archived:
 | |
|                 raise InvalidActionError('Document is not archived.')
 | |
| 
 | |
|             document.archived = False
 | |
|             document.archived_at = None
 | |
|             document.archived_by = None
 | |
|             document.updated_at = datetime.utcnow()
 | |
|             db.session.commit()
 | |
| 
 | |
|             # Set cache to prevent indexing the same document multiple times
 | |
|             redis_client.setex(indexing_cache_key, 600, 1)
 | |
| 
 | |
|             add_document_to_index_task.delay(document_id)
 | |
| 
 | |
|             return {'result': 'success'}, 200
 | |
|         else:
 | |
|             raise InvalidActionError()
 | |
| 
 | |
| 
 | |
| class DocumentPauseApi(DocumentResource):
 | |
| 
 | |
|     @setup_required
 | |
|     @login_required
 | |
|     @account_initialization_required
 | |
|     def patch(self, dataset_id, document_id):
 | |
|         """pause document."""
 | |
|         dataset_id = str(dataset_id)
 | |
|         document_id = str(document_id)
 | |
| 
 | |
|         dataset = DatasetService.get_dataset(dataset_id)
 | |
|         if not dataset:
 | |
|             raise NotFound('Dataset not found.')
 | |
| 
 | |
|         document = DocumentService.get_document(dataset.id, document_id)
 | |
| 
 | |
|         # 404 if document not found
 | |
|         if document is None:
 | |
|             raise NotFound("Document Not Exists.")
 | |
| 
 | |
|         # 403 if document is archived
 | |
|         if DocumentService.check_archived(document):
 | |
|             raise ArchivedDocumentImmutableError()
 | |
| 
 | |
|         try:
 | |
|             # pause document
 | |
|             DocumentService.pause_document(document)
 | |
|         except services.errors.document.DocumentIndexingError:
 | |
|             raise DocumentIndexingError('Cannot pause completed document.')
 | |
| 
 | |
|         return {'result': 'success'}, 204
 | |
| 
 | |
| 
 | |
| class DocumentRecoverApi(DocumentResource):
 | |
|     @setup_required
 | |
|     @login_required
 | |
|     @account_initialization_required
 | |
|     def patch(self, dataset_id, document_id):
 | |
|         """recover document."""
 | |
|         dataset_id = str(dataset_id)
 | |
|         document_id = str(document_id)
 | |
|         dataset = DatasetService.get_dataset(dataset_id)
 | |
|         if not dataset:
 | |
|             raise NotFound('Dataset not found.')
 | |
|         document = DocumentService.get_document(dataset.id, document_id)
 | |
| 
 | |
|         # 404 if document not found
 | |
|         if document is None:
 | |
|             raise NotFound("Document Not Exists.")
 | |
| 
 | |
|         # 403 if document is archived
 | |
|         if DocumentService.check_archived(document):
 | |
|             raise ArchivedDocumentImmutableError()
 | |
|         try:
 | |
|             # pause document
 | |
|             DocumentService.recover_document(document)
 | |
|         except services.errors.document.DocumentIndexingError:
 | |
|             raise DocumentIndexingError('Document is not in paused status.')
 | |
| 
 | |
|         return {'result': 'success'}, 204
 | |
| 
 | |
| 
 | |
| api.add_resource(GetProcessRuleApi, '/datasets/process-rule')
 | |
| api.add_resource(DatasetDocumentListApi,
 | |
|                  '/datasets/<uuid:dataset_id>/documents')
 | |
| api.add_resource(DatasetInitApi,
 | |
|                  '/datasets/init')
 | |
| api.add_resource(DocumentIndexingEstimateApi,
 | |
|                  '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/indexing-estimate')
 | |
| api.add_resource(DocumentBatchIndexingEstimateApi,
 | |
|                  '/datasets/<uuid:dataset_id>/batch/<string:batch>/indexing-estimate')
 | |
| api.add_resource(DocumentBatchIndexingStatusApi,
 | |
|                  '/datasets/<uuid:dataset_id>/batch/<string:batch>/indexing-status')
 | |
| api.add_resource(DocumentIndexingStatusApi,
 | |
|                  '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/indexing-status')
 | |
| api.add_resource(DocumentDetailApi,
 | |
|                  '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>')
 | |
| api.add_resource(DocumentProcessingApi,
 | |
|                  '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/<string:action>')
 | |
| api.add_resource(DocumentDeleteApi,
 | |
|                  '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>')
 | |
| api.add_resource(DocumentMetadataApi,
 | |
|                  '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/metadata')
 | |
| api.add_resource(DocumentStatusApi,
 | |
|                  '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/status/<string:action>')
 | |
| api.add_resource(DocumentPauseApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/pause')
 | |
| api.add_resource(DocumentRecoverApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/resume')
 | 
