mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-31 10:53:02 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			143 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			143 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import base64
 | |
| import logging
 | |
| from typing import Any, Optional, cast
 | |
| 
 | |
| import numpy as np
 | |
| from sqlalchemy.exc import IntegrityError
 | |
| 
 | |
| from configs import dify_config
 | |
| from core.entities.embedding_type import EmbeddingInputType
 | |
| from core.model_manager import ModelInstance
 | |
| from core.model_runtime.entities.model_entities import ModelPropertyKey
 | |
| from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
 | |
| from core.rag.embedding.embedding_base import Embeddings
 | |
| from extensions.ext_database import db
 | |
| from extensions.ext_redis import redis_client
 | |
| from libs import helper
 | |
| from models.dataset import Embedding
 | |
| 
 | |
| logger = logging.getLogger(__name__)
 | |
| 
 | |
| 
 | |
| class CacheEmbedding(Embeddings):
 | |
|     def __init__(self, model_instance: ModelInstance, user: Optional[str] = None) -> None:
 | |
|         self._model_instance = model_instance
 | |
|         self._user = user
 | |
| 
 | |
|     def embed_documents(self, texts: list[str]) -> list[list[float]]:
 | |
|         """Embed search docs in batches of 10."""
 | |
|         # use doc embedding cache or store if not exists
 | |
|         text_embeddings: list[Any] = [None for _ in range(len(texts))]
 | |
|         embedding_queue_indices = []
 | |
|         for i, text in enumerate(texts):
 | |
|             hash = helper.generate_text_hash(text)
 | |
|             embedding = (
 | |
|                 db.session.query(Embedding)
 | |
|                 .filter_by(
 | |
|                     model_name=self._model_instance.model, hash=hash, provider_name=self._model_instance.provider
 | |
|                 )
 | |
|                 .first()
 | |
|             )
 | |
|             if embedding:
 | |
|                 text_embeddings[i] = embedding.get_embedding()
 | |
|             else:
 | |
|                 embedding_queue_indices.append(i)
 | |
|         if embedding_queue_indices:
 | |
|             embedding_queue_texts = [texts[i] for i in embedding_queue_indices]
 | |
|             embedding_queue_embeddings = []
 | |
|             try:
 | |
|                 model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance)
 | |
|                 model_schema = model_type_instance.get_model_schema(
 | |
|                     self._model_instance.model, self._model_instance.credentials
 | |
|                 )
 | |
|                 max_chunks = (
 | |
|                     model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS]
 | |
|                     if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties
 | |
|                     else 1
 | |
|                 )
 | |
|                 for i in range(0, len(embedding_queue_texts), max_chunks):
 | |
|                     batch_texts = embedding_queue_texts[i : i + max_chunks]
 | |
| 
 | |
|                     embedding_result = self._model_instance.invoke_text_embedding(
 | |
|                         texts=batch_texts, user=self._user, input_type=EmbeddingInputType.DOCUMENT
 | |
|                     )
 | |
| 
 | |
|                     for vector in embedding_result.embeddings:
 | |
|                         try:
 | |
|                             # FIXME: type ignore for numpy here
 | |
|                             normalized_embedding = (vector / np.linalg.norm(vector)).tolist()  # type: ignore
 | |
|                             # stackoverflow best way: https://stackoverflow.com/questions/20319813/how-to-check-list-containing-nan
 | |
|                             if np.isnan(normalized_embedding).any():
 | |
|                                 # for issue #11827  float values are not json compliant
 | |
|                                 logger.warning(f"Normalized embedding is nan: {normalized_embedding}")
 | |
|                                 continue
 | |
|                             embedding_queue_embeddings.append(normalized_embedding)
 | |
|                         except IntegrityError:
 | |
|                             db.session.rollback()
 | |
|                         except Exception:
 | |
|                             logging.exception("Failed transform embedding")
 | |
|                 cache_embeddings = []
 | |
|                 try:
 | |
|                     for i, n_embedding in zip(embedding_queue_indices, embedding_queue_embeddings):
 | |
|                         text_embeddings[i] = n_embedding
 | |
|                         hash = helper.generate_text_hash(texts[i])
 | |
|                         if hash not in cache_embeddings:
 | |
|                             embedding_cache = Embedding(
 | |
|                                 model_name=self._model_instance.model,
 | |
|                                 hash=hash,
 | |
|                                 provider_name=self._model_instance.provider,
 | |
|                             )
 | |
|                             embedding_cache.set_embedding(n_embedding)
 | |
|                             db.session.add(embedding_cache)
 | |
|                             cache_embeddings.append(hash)
 | |
|                     db.session.commit()
 | |
|                 except IntegrityError:
 | |
|                     db.session.rollback()
 | |
|             except Exception as ex:
 | |
|                 db.session.rollback()
 | |
|                 logger.exception("Failed to embed documents: %s")
 | |
|                 raise ex
 | |
| 
 | |
|         return text_embeddings
 | |
| 
 | |
|     def embed_query(self, text: str) -> list[float]:
 | |
|         """Embed query text."""
 | |
|         # use doc embedding cache or store if not exists
 | |
|         hash = helper.generate_text_hash(text)
 | |
|         embedding_cache_key = f"{self._model_instance.provider}_{self._model_instance.model}_{hash}"
 | |
|         embedding = redis_client.get(embedding_cache_key)
 | |
|         if embedding:
 | |
|             redis_client.expire(embedding_cache_key, 600)
 | |
|             decoded_embedding = np.frombuffer(base64.b64decode(embedding), dtype="float")
 | |
|             return [float(x) for x in decoded_embedding]
 | |
|         try:
 | |
|             embedding_result = self._model_instance.invoke_text_embedding(
 | |
|                 texts=[text], user=self._user, input_type=EmbeddingInputType.QUERY
 | |
|             )
 | |
| 
 | |
|             embedding_results = embedding_result.embeddings[0]
 | |
|             # FIXME: type ignore for numpy here
 | |
|             embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist()  # type: ignore
 | |
|             if np.isnan(embedding_results).any():
 | |
|                 raise ValueError("Normalized embedding is nan please try again")
 | |
|         except Exception as ex:
 | |
|             if dify_config.DEBUG:
 | |
|                 logging.exception(f"Failed to embed query text '{text[:10]}...({len(text)} chars)'")
 | |
|             raise ex
 | |
| 
 | |
|         try:
 | |
|             # encode embedding to base64
 | |
|             embedding_vector = np.array(embedding_results)
 | |
|             vector_bytes = embedding_vector.tobytes()
 | |
|             # Transform to Base64
 | |
|             encoded_vector = base64.b64encode(vector_bytes)
 | |
|             # Transform to string
 | |
|             encoded_str = encoded_vector.decode("utf-8")
 | |
|             redis_client.setex(embedding_cache_key, 600, encoded_str)
 | |
|         except Exception as ex:
 | |
|             if dify_config.DEBUG:
 | |
|                 logging.exception(f"Failed to add embedding to redis for the text '{text[:10]}...({len(text)} chars)'")
 | |
|             raise ex
 | |
| 
 | |
|         return embedding_results  # type: ignore
 | 
